C++ Tutorids

C++ Tutorials

C++ Language and Library

C++ asaBetter C

Performance

Writing Robust Code

Miscellaneous Topics

Notes From ANSI/ISO

Object-oriented Design

C++ Tutorids

L0 V1o - [OOSR TSR 1
CH+ LanQUAOE @N0 LIBIAY ... oottt st a bbb b et s ne e 5
G IN@ITIESDACES.ttt ettt st et te et s e bbb se et se b e bebe Rt seebes st sEaE s A e b e beRe At 1 e sE e b e b e b e e e e e b e b ebe st e s e ee e bk e se et s e et ebebeneaen e 6
INTRODUCTION TO NAMESPACES - PART L.ttt sees sttt s s ss s 6
INTRODUCTION TO NAMESPACES - PART 2.ttt sees st ses s ssees 7
INTRODUCTION TO NAMESPACES - PART 3.ttt sttt es s ssses 8
INTRODUCTION TO C++ NAMESPACES - PART 4 ...ttt a bbb s 9
New Fundamanental TYPE = DOO0I ...ttt ea bbb s st 10
SEFEAM I/O.. ettt et sttt e be b e s et bk e tese bk e At e e s et et ek e At e se bt eReasaebe ebebebeneeeeeneebene e e ter e enens 13
INTRODUCTION TO STREAM /O PART 1 - OVERLOADING <<...uoiiiiirieieieirererinesiseee e seeseens 13
INTRODUCTION TO STREAM I/O PART 2 - FORMATTING AND MANIPULATORS........cccoeoeineneae 15
INTRODUCTION TO STREAM /O PART 3 - COPYING FILES. ..ot 16
INTRODUCTION TO STREAM /O PART 4 = TIE().cueueurteererererereeeieeeieiesiesesesesesesesesesssesese e ssesessssssssneesens 20
INTRODUCTION TO STREAM /O PART 5 - STREAMBUF ..ot 22
INTRODUCTION TO STREAM /O PART 6 - SEEKING IN FILES.......cooiiiieeererere e 23
L0 YTy (0= U o o] PP 24
LI 101 1= TP 31
INTRODUCTION TO C++ TEMPLATES PART 1 - FUNCTION TEMPLATES.......cccoveeeerree e, 31
NEW C++ FEATURE - MEMBER TEMPLATES ...ttt ss s ses s s s s ssaetenes 32
INTRODUCTION TO C++ TEMPLATES PART 2 - CLASS TEMPLATES.......cooiieeeeeee e 33
INTRODUCTION TO TEMPLATES PART 3 - TEMPLATE ARGUMENTS.......conttereneeieisieeesereneens 36
INTRODUCTION TO TEMPLATES PART 4 - SPECIALIZATIONS.....oooiererererere et 37
INTRODUCTION TO TEMPLATES PART 5 - FORCING INSTANTIATION...cootreieeeeererieesis e 39
INTRODUCTION TO TEMPLATES PART 6 - FRIENDS.........cctiiririetererererereseeeeee et 40
L LS Y 0] B0 - o TP 41
THE MEANING OF "STATIC! ..ottt ettt bbbt sttt e 41
LOCAL STATICS AND CONSTRUCTORS/DESTRUCTORS........cooorrerererineieieieieisieisisieesesese e sesesesssesenns 43
=0 = O 44
T 0] o TP 46
Standard TEMPIAEE LIDIary ..ottt s et e e bt e e et seaenesnteneaee 48
INTRODUCTION TO STL PART 1 - GETTING STARTEDootiiteiririeieierenerere s 48
INTRODUCTION TO STL PART 2 - VECTORS, LISTS, DEQUES.........ccoiierrerreeereene st 50
INTRODUCTION TO STL PART 3 - SET Sttt sea ettt s s bbbt 52
INTRODUCTION TO STL PART 4 - MAPS......ciieeetsre ettt ettt 53
INTRODUCTION TO STL PART 5-BIT SETS....oiiiererreereree et ss st 55
INTRODUCTION TO STL PART 6 - STACKS ...ttt netees it 55
INTRODUCTION TO STL PART 7 - ITERATORS ..ottt et 56
INTRODUCTION TO STL PART 8 - ADVANCE() AND DISTANCE() ..vcvevererirererereneeeneeeevesesesieieesenens 57
INTRODUCTION TO STL PART 9 - SORTING......coetriririririrerieieie ettt ss s 59
INTRODUCTION TO STL PART 10 - COPY INGcootiuiiririnerireririne sttt ssssssssssssssssens 60
INTRODUCTION TO STL PART 11 - REPLACING......coeeirtrttrtreee ettt ses e 61
INTRODUCTION TO STL PART 12 - FILLING ...ttt et 63
INTRODUCTION TO STL PART 13 - ACCUMULATING ..ottt 64
INTRODUCTION TO STL PART 14 - OPERATING ON SETS.....coottieririninieesineesesese s s s ssesessssesesens 64
(o= o1 o] = o oo TR 65
INTRODUCTION TO EXCEPTION HANDLING PART 1- A SIMPLE EXAMPLE.......cccooininnnininen. 65
INTRODUCTION TO EXCEPTION HANDLING PART 2 - THROWING AN EXCEPTIONcccce.... 67
INTRODUCTION TO EXCEPTION HANDLING PART 3- STACK UNWINDING.......cccomrrrrneririnnne 69
INTRODUCTION TO EXCEPTION HANDING PART 4 - HANDLING AN EXCEPTION.......ccccccovnenee 70
INTRODUCTION TO EXCEPTION HANDLING PART 5 - TERMINATE() AND UNEXPECTED().... 72
PLaCeMENt NEW/DEIELE.........cucuei ettt e st as e et eae e se et et et e e e et e s e e e sa et e sene et e e e et esnnenes 74
Pointers to Members and FUNCLIONS...........ccieiiiiececcsces ettt et s sa et se e s e nse s 76
POINTERS TO MEMBERS.........cocttttttistei ittt skt 76
A NEW ANGLE ON FUNCTION POINTERS.......cccoetrrrirrirerereseesis ettt 78

C++ Tutorids

QIR =0 o = g1 o= 1 o] o OO TP 79
[T g o O {3 81
Explicit Template Argument SPECITICAIIONocreeiieiriireeeeeeer ettt ee et s ees 82
USING SN LIDIBITES ...ttt et ettt st ekttt s bbbt et ebben 83

INTRODUCTION TO C++ LIBRARIES PART 1 - <CASSERT> AND <CERRNO>.........cooveererieiiiae, 83

INTRODUCTION TO C++ LIBRARIES PART 2 - STRINGS......ccictcctceeectsiee sttt 84

INTRODUCTION TO C++ LIBRARIES PART 3 - NUMERIC_LIMITS ..ottt 86

INTRODUCTION TO C++ LIBRARIES PART 4 - NO-THROW OPERATOR NEW() ...ocvvvveerrirerereenee 88

INTRODUCTION TO C++ LIBRARIES PART 5 - PROGRAM INVOCATION AND TERMINATION. 88

INTRODUCTION TO C++ STANDARD LIBRARIES PART 6 - STANDARD EXCEPTIONS................ 89

INTRODUCTION TO C++ STANDARD LIBRARIES PART 7 - PAIR ..ottt 90

INTRODUCTION TO C++ STANDARD LIBRARIES PART 7 - COMPLEXcocoovniieirieininiseeineseneens 91
Operators NEW[] an0 AEIELE]]cuceiieccee et et s e bbbt se st b et e se s e e e s eaene e ssenenens 92
(O O 7= = o (= S OSSR 94
Y | o= (] =TSSR 96
CHF @SABELEN C ...ttt ettt e b e £ E b b E e bR e Rt E £ et e bt e b ettt e nne 98
L g Tox g 0] (0] 0 1= TP 99
REFEIEICES. ..ottt sttt b bt s a bR bbb e R £ £ AR A £ e b e bbb b Ere £ ee £t et bbbttt s 100
OPEIEOr NEW/DEIELE ...ttt e s et e e e b s et e s et b eseae et sheaebeaete et besene et e seeterenn e s seees 101
DEClAEliON SEAIEMENESvevteeeeereee sttt st b bt e h b e ee s eb b £ttt bbbt b ee s st st e 104
L g Tox i T @ = LT [g Vo TR 106
(@0 = (0 @)Y 7= g [o="o |1 1o [P RRT 107
INTINE FUNCHIONS ...ttt b b £t e bbb £ £ £ e b b et et e bbbttt e s 108
QLD SN 0= OSSPSR 113
L= = T 1o O SRT 114
GENEYAl INITIBIIZENS ...ttt ettt bbbt bbb bbbt et 115
JUMPING Past INITAlIZALONc.cucuiiiriieecceerr et s e bbb s s s b et e se s e et enene s 117
FUNCLION PAraMELEr INBIMES........cciieiiiiieieicere ettt sttt b s bbb st se bbb bbbt sttt ettt s 118
CharaCter TYPES ANU ATTAYScueiiiireeeeeeteeeseres ettt e ae et s st e e e e aese s s e s et et et esese e st esesensse s et es e e s senesesesese s nnnsans 118
FUNCLION-SEYI @ CASES.......cue vttt sttt bbb s s e et b e b eae s s se et et e b e ae e se s eseteseeteaeteaeteneentesesens 119
T E = Lo I IR o1 OO 120
ANONYMOUS UNIONS......cuciiiieietetitieiest st te e sesssesss e sese s sasseaesassssetesssenesssseseseseseasasssetesesensssssesetesensnssssbesesasensssnsssssnsanens 121
0 T O =SS =TT 122
L [0 1ol V== TSR 122
G PEITOMMBNCE ...ttt e e bbb s e e bbb bbbt bttt ettt 124
Handling aCommon SIrCMP() CaSE......coucucueireriririereiiciess e eseae s st ssses st se s st ss s sas b st e se st saesse e e ssstesssenis 124
Handling Lots of Small StringSWith @ CH+ ClaSS ...t s sae s 125
Hidden CoNnStrUCLON/DESIIUCION COSES.......cuvuruiererererirererereseeeseses et st s esse ettt sttt bbb st es e 130
DEClAELiON SEALEMENESvevteeieereeerie et s b bt e b e £ e b bttt bbbt e st e st e 130
SEIEAM 1/O PEITOMMBNCEcuieiiieiereetete ettt s et b bbb bbbttt sttt 132
S = T @ @ 1H 1 | TSR 132
PEr-ClaSS NEW/DEIBLE........ceee ettt bbbt bbb £ e bbb bbbt bbb et st st et 133
(10 o] L= (= g 1= 3ROSR 135
WHEING RODUSE COOE.......ocuiuiieceiieie sttt st st b e e e bt eaese s s aeset et e s s bebasenesssaesesesennnnnnas 137
Assart and SUDSCIIPE CHECKING......coviueieciirire ettt s b b s s et bese e sssnesebenennnnas 137
Constructors and INtegrity ChECKINGc.ciiieiiieieciii sttt s s e s enees 139
SEFEAM 11O ...ttt bbb e e b SR eE bbb b Ea £ £ e bR bbbt e et bt 142
VB o T = aT= o TU S I o TS 142
Standard TEMPIAEE LIDIaryccccviiecec sttt sttt a e se et e e e e 143
L0 = 010 [= V= (10 TS 143
Book Review - The Mythical Man-MONth ... st s 144
CAlENAAr DALE ClESS......oeeeeeereieieire ettt b bbbt e £t st s ee bbb bbb b b s se £t b bbb bbb ne ettt 145
Boyer-Moore-Horspool String SEarChiNg.........cucecueieieeieeeeiei st se st sas s ssse e ssssesanas 153
BOOK REVIEW = INNEE LOOPS......civeeeieiiiirisieesieesestetetesessssssstesesesesase e se e sssas st esese s sasessesene s s ssesasssesessnsesesesnsesensesasssenes 156
INOLES FIOM ANSI/ISO ...ttt e bbbt s et ettt 156
S T lo [T (= = R I8, 1= ST 157

C++ Tutorids

EXEErn INHNES BY DEFALIL ..ottt e sttt et ettt es s 159
Template Compilation MOCE! Part L.........c.ccierrerr sttt s nbe bt 161
Template Compilation MOCE! Part 2.........c.ccurererrrere et e 163
FUNCLioN LOOKUP IN NBMESPDACESc.cueureeuieeeirerirerereseeseseasssas i e tsssesesesesesesssssssesesesssssssetesesessssssesssessassssssesesesessssssenes 166
Recent Changes to terminate() and UNEXPECLEA()ccurururerururerireririeerirerere e sesesssas i s beesese e sesesssaesesssess e sasseeasees 168
More on terminate() aNd UNEXPECLEA()cueurvrerurererirerieeteeeteeeieieie ettt esesess s b s bbbt s sese e s b st es s s e sees 169
FOOW-UP ON PlaCeMENt NOW/DEIELEc.cururerirerererireree ettt et b bbb ee e s 170
Current Draft Standard Now PUblicly AVaAIADIE ... e 170
Clarifications on EXCEPtion HANAIING.ccoruiurueeeieieieeis ettt seas bbbt sneeeees 171
TRl o[RS (U To (o T=R (ol o] o] = o [T POV 173
L 010 0NV o Lo OO 174
Template DEfaUlt ATQUMENLSc.cuiieeie ettt ettt s e s s e s s et aebesese st ebesebase s seesebenesesessebensansnas 175
Resolution of Template Default AFQUIMENES..........cc.cceiiiieecciree et s s b e s s e s senenenes 177
RESOIULION Of REIUIN WV OI0......eceteeeeeeeeseeesteeeteeerereresete seeeessasebeeesebee st eb et e bbbt e st st e nen 178
State Of the Ct SEANABIU.......c.ceeeeeeeieree ettt st et e ettt st 178
Template Separate Compilation and SPECIAlIZALIONcccceciieeiceiiees e e s 178
The C++ Standard Library and RESEIVEA NAMES...........ccueiiiviiirsecesse et sse et 179
The C++ Programming Language - Third EQItiON............cciiieeciiceee et s re e 181
A Sharp Angle On FUNCHON POINLEFS ..ottt e s e ss e e b e s sasse st aese e s et 181
State of the CH+ StaNdard - 1S DONEL ...ttt s eae bbb bbbt e 183
Exception Safety in CONAINEYS, Pat L........c.ccoiieuierieiie ettt et a s sn et ne s 183
Exception Safety in CONAINEYS, PAt 2........c.ccoiveccrieiiese ettt et s e sn et a s s 184
1o 0] 1 OSSOSO 186
L = 10 ST o= I = o o RSP 188
The Vector Constructor AMBIQUILY ProbIEM ... e s 190
Removal of Error-Prone Default ArQUIMENTS..........c.ccieiriiricciseees ettt st ass et se e s saennnnes 191
TYPENAME CRANGEScveveurie ettt te sttt sttt s b e se b e bese e et et e ese s se s et et et ene s b esasese s ae et b et b ens e tesesesetesensasesennaanens 192
(@ oI wi o 1= 0115 o [L= T o 1RO 194

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 1 - ABSTRACTIONccconinriririnieinenn. 194

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 2 - DATA ABSTRACTION......cccccoovunnen. 195

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 3 - POLYMORPHISM.......cccouorrinniniann. 197

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 4 - DATA HIDING ..o 199

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 5 - REPRESENTATION HIDING........... 200

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 6 - EXTENSIBILITY ..cocuciirrrrrireceee 201

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 7 - MORE ABOUT EXTENSIBILITY ... 202

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 8 - A BOOK ON C++ DESIGN............... 203

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 9- TEMPLATESVS. CLASSES............ 203

C++ Tutorids

C++ Languageand Library

Namespaces
New Fundamental Type - bool

Stream 1/O

Virtual Functions

Templates
Use of Static

Mutable
Explicit
Standard Templ ate Library

Exception Handling

Placement New/Delete

Pointers to Members and Functions

Type Identification

Dynamic Casts
Explicit Template Argument Specification

Using Standard Libraries

Operators new[] and delete]]

C++ Character Sets

Allocators

C++ Tutorids

C++ Namespaces

INTRODUCTION TO NAMESPACES - PART 1

Namespaces are a relatively new C++ feature just now starting to appear in C++ compilers.
We will be describing some aspects of namespacesin subsequent newsletters.

What problem do namespaces solve? Well, suppose that you buy two different general-
purpose class libraries from two different vendors, and each library has some features that
you'd like to use. Y ou include the headers for each class library:

#include "vendorl.h"
#include "vendor2.h"

and then it turns out that the headers have thisin them:
/! vendorl.h

... various stuff ...
class String {

H

// vendor2.h

... various stuff ...

class String {

b
This usage will trigger a compiler error, because class String is defined twice. In other words,
each vendor has included a String class in the class library, leading to a compile-time clash.
Even if you could somehow get around this compile-time problem, there is the further
problem of link-time clashes, where two libraries contain some identically-named symbols.
The namespace feature gets around this difficulty by means of separate named namespaces.

/I vendorl.h

... various stuff ...

namespace Vendorl {
class String {

H

C++ Tutorids

/! vendor2.h
... various stuff ...

namespace Vendor2 {
class String {

H
}

There are no longer two classes named String, but instead there are now classes named
Vendorl::String and Vendor2::String. In future discussions we will see how namespaces can
be used in gpplications.

INTRODUCTION TO NAMESPACES - PART 2

In the last issue we discussed one of the problems solved by namespaces, that of conflicting
class names. Y ou might be using class libraries from two different vendors, and they both
have a String class in them. Using namespaces can help to solve this problem:
namespace Vendorl {
class String{ ... };
}

namespace Vendor2 {
class String{ ... };

How would you actually use the String classes in these namespaces? There are a couple of
common ways of doing so. The first is ssimply to qualify the class name with the namespace
name:

Vendorl::String s1, s2, S3;
This usage declares three strings, each of type Vendorl::String.
Another approach isto use a using directive:

using namespace Vendorl;
Such adirective specifies that the names in the namespace can be used in the scope where the
using directive occurs. So, for example, one could say:

using namespace Vendorl;

String s1, s2, S3;
and pick up the String class found in the Vendor1 namespace.
What happens if you say:

using namespace Vendorl;

using namespace Vendor2;
and both namespaces contain a String class? Will there be a conflict? The answer is'"'no",
unless you try to actually use String. The using directive doesn't add any names to the scope,
but simply makes them available. So usage like:

String s1,;
would give an error, while:

Vendorl::String s1;

C++ Tutorids

Vendor2::String s2;
would still work.
Y ou might have noticed that namespaces have some similarities of notation with nested
classes. But namespaces represent a more general way of grouping types and functions. For
example, if you have:
classA {
void f1();
void f2();

then fi() and f2() are member functions of class A, and they operate on objects of class A (via
the "this" pointer). In contrast, saying:

namespace A {
void f1();
void f2();
}

isaway of grouping functions f1() and f2(), but no objects or class types are involved.

INTRODUCTION TO NAMESPACES- PART 3
In previous issues we talked about how C++ namespaces can be used to group names together.

For example:
namespace
A{
void f1();
void f2();
}
namespace B {
void f1();
void f2();

The members of the namespace can be accessed by using qualified names, for example:
void g() {A::f1();}
or by saying:
using namespace A;
void g() {f10):}
Another interesting aspect of namespacesis that of the unnamed namespace:
namespace {
void f1();
int x;
}
Thisisequivalent to:
namespace unique_generated name {
void f1();
int x;
}

using namespace unique_generated_name;

C++ Tutorids

All unnamed namespaces in a single scope share the same unique name. All global unnamed
namespaces in atrandation unit are part of the same namespace and are different from similar
unnamed namespaces in other translation units. So, for example:

namespace {
int x1,
namespace {
intyl;
}
}
namespace {
int x2;
namespace {
inty2;
}
}

x1 and x2 are in the same namespace, as are y1 and y2.
Why is this feature useful ? It provides an alternative to the keyword "static" for controlling
global visihility. "static" has severa meaningsin C and C++ and can be confusing. If we have:
static int x;
static void f() {}
we can replace these lines with:
namespace {
int x;
void f() {}

INTRODUCTION TO C++ NAMESPACES- PART 4

Previously we talked about how namespaces can be used to group names into logical
divisions:

namespace Vendorl {
class String {
};
int x;

}

namespace Vendor2 {
class String {
};
int x;

}

and how those names can be accessed via qualification:
Vendor2::String s,
or ausing directive:

C++ Tutorids

using namespace Vendor2;

String s,
Another way of accessing names is to employ ausing declaration:
using Vendor2::String;

String s;
This can be alittle confusing. A using directive:

using namespace X;
saysthat all the namesin namespace X are available for use, but none of them are actually
declared or introduced. A using declaration, on the other hand, actually introduces a name into
the current scope. So saying:

using namespace Vendor2;
makes String and x available for use, but doesn't declare them. Saying:

using Vendor2::String;
actually introduces Vendor2::String into the current scope as adeclaration. Saying:

using Vendor1::String;

using Vendor2::String;
will trigger a "duplicate declaration™ compiler error.
There are several other aspects of using declarations that are worth learning about; these can
be found in agood C++ reference book.

New Fundamanental Type - bool

A new fundamental (builtin) type has recently been added to C++. It isatype for representing
Boolean values and uses the keyword "bool". For example, you could say:
bool b;

b = true;
if (b)

A bool valueis either true or false. A bool value can be converted to an integer:
bool b;
inti;

b = false

i =int(b);
in which case false turnsinto 0 and true into 1. This process goes under the C/C++ name of
"integra promotion".

10

C++ Tutorids

A pointer, integer, or enumeration can be converted to abool. A null pointer or zero value
becomes false, while any other value becomes true. Such conversion is required for
conditional statements:

char* p;

if (p)

In this example "p" is converted to bool and then the true/false value is checked to determine
whether to execute the conditiona block of code.
Why is abool type an advantage? Y ou can get a variety of opinions on whether thisis a step
forward. In C, common usage to mimic this type would be as follows:

typedef int Bool;

#define FALSE O

#define TRUE 1
One problem with such an approach is that it's not at all type-safe. For example, a programmer
could say:

Bool b;

b=37;
and the compiler wouldn't care. Another problem is displaying values of Boolean type:
printf("%s", b ? "true" : "fase");
which is awkward. In C++ it ispossible to set up a stream |/O output operator specifically for
aparticular type, and thus output of bool values can be distinguished from plain integral types.
Thisis an example of function overloading (see next section). Without bool as a distinct type,
usage like:
void f(int i) {}

void f(Bool b) {}
would be invalid.
Finaly, why wasn't bool added to the language, but as a class type found in a standard library?
Thisquestion is hard to answer, but one possible reason is that many C implementations have
supplied a Boolean pseudo-type using a typedef and #define scheme asillustrated above, and
these implementations rely on representing Booleans as integral types rather than as class

types.

(further comment)
In the last issue we talked about the new fundamental type "bool"”. Two additional comments
should be made about this feature. An example of how Boolean has been faked in C was
given:

typedef int Bool;

#define FALSE O

#define TRUE 1
and then usage like this:

11

C++ Tutorids

Bool b;

b=37;
was presented, with a comment that a C compiler would not complain. A C++ compiler given
similar usage:

bool b;

b=37;
will not complain either, but the two sequences are not the same. In the C case, alater
statement like:

if (b ==TRUE)

will fail, Bécwseit reduces to:
if (37==1)

In the C++ casg, the statement:
b=37;

turns into:
b = true;

and alater test:
if (b==true)

will indeed succeed.
The issue was a so raised as to why bool was not implemented as a class type in some C++
standard library. Dag Bruck of the ANSI/ISO C++ committees sent an example of why this
will not work.
Thereisarule in C++ that says that at most one user-defined conversion may be automatically
applied. A user-defined conversion is aconstructor like:

classA {

public:

A(int);
b

to convert an int to an A, or aconversion function:
classA {
public:
operator int();
H

to convert an A to aniint.
If bool isa class type, for example:
class bool {
public:
operator int();

then the call "f(3 < 4)" in this code:
class X {
public:
X(int);

12

C++ Tutorids

1
void f(X);

main()

{
}

will result in two user-defined conversions, one to convert the bool class object resulting from
"3 < 4"to anint, the other to call the X(int) constructor on the resulting int.

f(3<4);

Stream |1/O

INTRODUCTION TO STREAM 1/0 PART 1- OVERLOADING <<

In this issue we will begin discussing the stream 1/0O package that comes with C++. The first
four sections of thisissue are related and present several aspects of stream 1/0O along with
some related topics.
If you've used C++ at all, you've probably seen a simple example of how to do output:
cout << "Hello, world" << "\n";
instead of:
printf("Hello, world\n");
cout is an output stream, kind of like stdout in C. The C example could be written as:
fprintf(stdout, "Hello, world\n™);
which makes this correspondence abit clearer.
Once you get beyond simple input/output usage, what is the stream I/O package good for? One
quite useful thing it can do isto allow the programmer to take control of 1/O for particular
C++ types such as classes. This end is achieved by the use of operator overloading.
Suppose that we have a Date class:
class Date {
int month;
int day;
int year;
public:
Date(char*);
Date(int, int, int);
b
with an internal representation of a Date using three integers for month, day, and year, and a
couple of constructors to create a Date object. How would we output the value of a Date
object?
One way would be to devise amember function:
void out();

13

C++ Tutorids

implemented as:
void Date::out()

{
}

This function would operate on an object instance of a Date and would access the

month/day/year members and display them. This approach will certainly work and may be

suitable in some kinds of applications.

But this scheme doesn't integrate very well with stream I/O. For example, | cannot say:
Date d(9, 25, 1956);

printf("%d/%d/%d", month, day, year);

cout << "Today'sdateis" << d;
but must say:
printf("Today's dateis™");
d.out();
For this purpose it is necessary to overload the << operator. We can add afriend function to
Date:
friend ostream& operator<<(ostream& 0s, const Date& d);
with definition:
ostream& operator<<(ostream& 0s, const Date& d)

{

}
With thisdefinition, it is possible to say:
Date d(9, 25, 1956);

return os << d.month << "/" << d.day <<"/" << d.year;

cout << "Today'sdateis" << d << "\n";
Several aspects of this example need explanation. An overloaded operator in C++ isan
operator like "+" or "<<" that is given a specia meaning for certain kinds of arguments, and
turns into a function. Wherever the operator is used with these arguments, a function is called.
So, for example, an output statement:

cout << "xxx";
isactually:

cout.operator<<("xxx");
which isavalid function call in C++ if you're using stream 1/0O.
cout is an instance of class ostream (at least conceptually; the actual hierarchy is abit
complicated). When we wrote the actual statement to output a formatted Date:

return os << d.month <<"/" << d.day << "/" << d.year;
we returned the ostream reference so as to allow << usage to be chained. Because << operators
group left to right, a sequence like:

cout << "x" <<"y";
actually means:

cout.operator<<("x").operator<<("y");
Finally, the reason that we declared operator<<(ostream&, const Date&) as afriend and not a
member is that amember function that is a binary operator has an implicit convention on
argument usage, namely, that for some operator @:

X@y

14

C++ Tutorids

means:

x.operator@(y);
that is, the left operand of the operator must be an instance of the class of which the
overloaded operator is amember.

INTRODUCTION TO STREAM 1/0 PART 2- FORMATTING AND
MANIPULATORS

In thisissue we will talk further about stream 1/0. An excellent book on the subject is Steve

Teale's "C++ |OStreams Handbook" (Addison-Wesley, $40). It has 350 pages with many

examples and thoroughly covers 1/O streams. It should be noted that 1/0 streams are

undergoing revision as part of the ANSI/ISO standardization process. The examples we

present are based on C++ headers and librariesin common use.

One obvious question about stream I/O is how to do formatting. A simple operation like:
intn=37,

cout << n;
isequivalent to:
printf("%d", n);
that is, no special formatting is done.
But what if you want to say:
printf("%08d", n);
displaying nin afield 8 wide with leading 0s? Such an operation would be performed by
saying:
#include <iostream.h>
#include <iomanip.h>

[* stuff */

cout << setfill('0") << setw(8) << n;
setfill() and setw() are examples of 1/0O stream manipulators. A manipulator is a data object of
atype known to I/O streams, that allows a user to change the state of a stream. We'll see how
manipulators are implemented in a moment.
The operation illustrated here first setsthe fill character to '0' and then the width of the field to
8 and then outputs the number. Some 1/0 stream settings like the fill character and left/right
justification persist, but the width is reset after each output item.
A similar way of changing stream state is to use regular member function calls. For example,
cout.setf(ios::left);

cout << setfill('0") << setw(8) << n;
produces output:
37000000
with left justification.
In this example, you see "ios::left" mentioned. What isios?iosis the base class of the streams
class hierarchy. In the implementation used here, the hierarchy is:
classios{ /* stuff */ };

15

C++ Tutorids

class ostream : publicios{ /* stuff */ }

class ostream_withassign : public ostream { /* stuff */}
and cout is an object instance of ostream_withassign. That is, there is abase class (ios), and
the output streams class (ostream) derives or inherits from it, and ostream_withassign derives
from ostream. Chapter #10 of Teal€'s book mentioned above discusses the rationale for the
ostream_withassign class.

A statement like:

cout.setf(ios::left);
calls the member function setf() inherited from the ios class, to set flags for the stream.
ios::left is an enumerator representing a particular flag value.
How can you design your own manipulators? A simple example is as follows:
#include <iostream.h>
#include <iomanip.h>

ostream& dash(ostream& 0s)

{
retunos<<" --";

}

main()

{
cout << "xxx" << dash << "yyy" << endl;
return O;

}

We define amanipulator called "dash” that inserts adash into an output stream. Thisis
followed by the output of more text and then a builtin manipulator ("endl™) is called. endl
inserts anewline character and flushes the output buffer. We will say more about end! later in
the newsletter.
Manipulators are in fact pointers to functions, and they are implemented via a couple of hooks
in iostream.h:

ostream& operator<<(ostream& (*)(ostream&));

ostream& operator<<(ios& (*)(ios&));
These operators are member functions of class ostream. They will accept either a pointer to
function that takes an ostreamé& or a pointer to function that takes an ios& . The former would
be used for actual output, the latter for setting ios flags as discussed above.

INTRODUCTION TO STREAM 1/0 PART 3-COPYING FILES

Suppose that you're writing a program to copy from standard input to standard output. A
common way of doing thisisto say:

#include <stdio.h>

#include <assert.h>

16

C++ Tutorids

int main(int argc, char* argv[])
{

FILE* fpin;

FILE* fpout;

intc;

assert(argc == 3);

fpin = fopen(argv[1], "r'");
fpout = fopen(argv[2], "w");

assert(fpin & & fpout);

while ((c = getc(fpin)) '= EOF)
putc(c, fpout);

fclose(fpin);
fclose(fpout);

return O;

}
EOF is amarker used to signify the end of file; its value typically is-1. In most commonly-
used operating systems there is no actual character in afile to signify end of file.
This approach works on text files. Unfortunately, however, for binary files, an attempt to copy
a 10406-byte file resulted in output of only 383 bytes. Why? Because EOF isitself avalid
character that can occur in abinary file. If set to -1, then thisis equivalent to 255 or 0377 or
Oxff, a perfectly legal byte in afile. So we would need to say:

#include <stdio.h>

#include <assert.h>

int main(int argc, char* argv[])
{

FILE* fpin;

FILE* fpout;

intc;

assert(argc == 3);

fpin = fopen(argv[1], "rb");
fpout = fopen(argv[2], "wb");

assert(fpin & & fpout);
for (;;) {
c = getc(fpin);

if (feof (fpin))
break;

17

C++ Tutorids

fputc(c, fpout);
}

fclose(fpin);
fclose(fpout);

return O;
}
feof() isamacro that tells whether the previous operation, in this case getc(), hit end of file.
Note also that we open the files in binary mode.
How would we do the equivalent in C++? One way would be to say:
#include <fstream.h>
#include <assert.h>

int main(int argc, char* argv[])

{

assert(argc == 3);

ifstream ifs(argv[1], ios::in | ios::binary);
ofstream ofs(argv[2], ios::out | ios::binary);
assert(ifs & & ofs);

char c;

while (ifs.get(c))
ofs.put(c);

return O;

ifstream and ofstream are input and output file streams, taking asingle char* argument and a
set of flags.
These classes are derived from ios, which has an operator conversion function (from a stream
object to void*). If astatement like:

assert(ifs & & ofs);
is specified, then this conversion function is called. It returns O if there's something wrong
with the stream. In other words, an object like "ifs" is converted to a void* automatically, and
the value of the void* pointer tells the stream status (non-zero for a good state, zero for bad).
The actual copying is straightforward, using the get() member function. It accepts areference
to a character, so there's no need to use the return value to pass back the character that was
read.

A somewheat terser approach would be to say:

#include <fstream.h>
#include <assert.h>

int main(int argc, char* argv([])

18

C++ Tutorids

{
assert(argc == 3);
ifstream ifs(argv[1], ios::in | ios::binary);
ofstream ofs(argv[2], ios::out | ios::binary);
assert(ifs & & ofs);
ofs << ifs.rdbuf();
return O;

}

with no loop involved. The expression:
ifs.rdbuf()

returns a filebuf*, a pointer to an object that actually represents the low-level buffering for the
file. filebuf is derived from aclass streambuf, and ofstream is derived from ostream, and
ostream has an operator<< defined for streambufs. So the looping over the input file occurs
within operator<<. We are "outputting" a filebuf/streambuf.
Finally, how about code for copying standard input to output:

#include <iostream.h>

int main()
{

char c;

while (cin >>¢)
cout << ¢;

return O;

}
If you run this program on text input, you will notice that the output's pretty jumbled. Thisis

because by default whitespace is skipped on input. To fix this problem, you can say:
#include <iostream.h>

int main()
{

char c;
cin.unsetf(ios::skipws);

while (cin>>c)
cout << ¢;

return O;
}
to disable the skipws flag. This program does not, however, work with binary files. To make it
work getsinto atricky issue; the binary mode is specified when opening afile, and in this
example standard input and output are already open. Thisties in with low-level buffering and

19

C++ Tutorids

reading the first chunk of afile when it's opened. By contrast, skipping whitespaceis ahigher-
level operation in the stream I/O library.
(correction)
In issue #008 we talked about copying files and said this about one of the examples of copying
filesusing C:

This approach works on text files. Unfortunately, however, for binary

files, an attempt to copy a 10406-byte file resulted in output of only

383 bytes. Why? Because EOF isitself avalid character that can

occur inabinary file. If setto -1, then thisis equivaent to 255

or 0377 or Oxff, aperfectly lega bytein afile.
Thisisn't quite the case. A common mistake when copying filesin C isto use a char instead of
an int with getc() and putc(). If achar is used, then the explanation above is correct, because
with abinary file EOF interpreted as a character is one of the 256 valid bit patterns that a char
can hold.
But with an int thisis not a problem. getc(), and its functional equivalent fgetc(), return an
unsigned char converted to an int. So the int can represent all character values 0-255, along
with the EOF marker (typicaly -1).
It turns out that the reason why the example failed was due to a”Z in thefile. ~Z used to be
used as an end-of-file marker for DOS files used on PCs.
Thanks to David Nelson for mentioning this.

INTRODUCTION TO STREAM |/O PART 4-TIE()

In issue #008 we talked about copying files using avariety of methods. One example that was
presented was this one:
#include <iostream.h>

int main()
{

char c;
cin.unsetf(ios::skipws);

while (cin>>c)
cout << ¢;

return O;

}
Jerry Schwarz suggested that it might be worth discussing the tie() function and its effect on

the performance of this code. Specifically, if we slightly change the above code to:
#include <iostream.h>

int main()
{

char c;

cin.tie(0);

20

C++ Tutorids

cin.unsetf(ios::skipws);

while (cin >> ¢)
cout << ¢;

return O;

}
it runs about 8X faster with one popular C++ compiler, and about 18X with another.
The difference has to do with buffering and flushing of streams. When input is requested, for
example with:

cin>>c
there may be output pending in the buffer for the output stream. The input stream is therefore
tied to the output stream such that a request for input will cause pending output to be flushed.
Flushing output is expensive, typically triggering a flush() call and awrite() system call (on
UNIX systems). Disabling the linkage between the input and output streams gets rid of this
overhead.
To further illustrate this point, consider another example:

#include <iostream.h>

int main()
{
char buf[100];

/lcin.tie(0);
cin.unsetf(ios::skipws);
cout.unsetf(ios::unitbuf);

cout << "What is your name?";
cin >> buf;

return O;

}
It's common for output to be completely unbuffered (unit buffering) if going to atermina
(screen or window). So setting cin.tie(0) will not necessarily change observable behavior,
because output will be flushed immediately in all cases.
To affect behavior in this example, one also needs to disable unit buffering for the stream,
achieved by saying:

cout.unsetf(ios::unitbuf);
Once thisis done, cin.tie(0) will change behavior in avisible way. If the input stream is
untied, then the prompt in the example above will not come out before input is requested from
the user, leading to confusion.
Note also that current libraries vary in their behavior. The above example works for one
library that was tried, but for another, there appears to be no way to disable unit buffering

21

C++ Tutorids

under any circumstances, when output is to aterminal. The draft ANSI/ISO C++ standard

calls for unit buffering to be set for error output ("cerr").

If tie() is called with no argument, it returns the stream currently tied to. For example:
cout << (void*)cin.tie() << "\n";

cout << (void*)(&cout) << "\n";
giveidentical resultsif cinis currently tied to cout.
Copying files a character at atime has other pitfalls. One has to be careful in assessing the
buffering and function call overhead for anything done on a per-character basis. There is yet
another way of copying files by character, using streambufs, that we'll present in a future
issue.

INTRODUCTION TO STREAM |/0O PART 5- STREAMBUF

In previous issues we talked about various ways of copying files using stream 1/0O, some of the
ways of affecting I/0O operations by specifying unit buffering or not and tying one stream to
another, and so on.
Another way of copying input to output using stream 1/0O isto say:

#include <iostream.h>

int main()
{

intc;

while ((c = cin.rdobuf()->sbumpc()) '= EOF)
cout.rdbuf()->sputc(c);

return O;

}
This scheme uses what are known as streambufs, underlying buffers used in the stream I/O
package. An expression:

cin.rdbuf()->sbumpc()
says "obtain the streambuf pointer for the standard input stream (cin) and grab the next
character from it and then advance the internal pointer within the buffer”. Similarly,

cout.rdbuf()->sputc(c)
adds a character to the output buffer.
Doing I/0O in thisway is lower-level than some other approaches, but correspondingly faster. If
we summarize the four file-copying methods we've studied (see issues #008 and #009 for code
examples of them), from slowest to fastest, they might be as follows.
Copy acharacter at atime with >> and <<:

cin.tie(0);

cin.unsetf(ios::skipws);

while (cin >>c)
cout << ¢;
Copy using get() and put():
ifstream ifs(argv[1], ios::in | ios::binary);

22

C++ Tutorids

ofstream ofs(argv[2], ios::out | ios::binary);

while (ifs.get(c))
ofs.put(c);
Copy with streambufs (above):
while ((c = cin.rdbuf()->sbumpc()) != EOF)
cout.rdbuf()->sputc(c);
Copy with streambufs but explicit copying buried:
ifstream ifs(argv[1], ios::in | ios::binary);
ofstream ofs(argv[2], ios::out |ios::binary);

ofs << ifs.rdbuf();
A table of relative times, for one popular C++ compiler, comes out like so:
>> << 100

get/put 72
streambuf 62

streambuf hidden 43
Actual timeswill vary for agiven library. Perhgps the most critical factor is whether functions
that are used in agiven case are inlined or not. Note also that if you are copying binary files
you need to be careful with the way copying is done.
Why the time differences? All of these methods use streambufs in some form. But the slowest
method, using >> and <<, also does additional processing. For example, it callsinternal
functions like ipfx() and opfx() to handle unit buffering, elision of whitespace on input, and so
on. get/put also call these functions.
The fastest two approaches do not worry about such processing, but simply allow one to
manipulate the underlying buffer directly. They offer fewer services but are correspondingly
faster.

INTRODUCTION TO STREAM 1/0 PART 6 - SEEKING IN FILES

In earlier issues we talked about streambufs, the underlying buffer used in I/O operations. One
of the things that you can do with abuffer is position its pointer at various places. For
example:

#include <fstream.h>

int main()

{

ofstream ofs("xxx");
if ('ofs)

; Il give error
ofs<<'’;

ofs<< "abc";

23

C++ Tutorids

streampos pos = ofs.tellp();
ofs.seekp(0);

ofs<<'X

ofs.seekp(pos);

ofs << "def\n";

return O;

}
Here we have an output file stream attached to a file "xxx". We open thisfile and write a
single blank character at the beginning of it. In this particul ar application this character isa
status character of some sort that we will update from time to time.
After writing the status character, we write some characters to the file, at which point we wish
to update the status character. To do this, we save the current position of the file using tellp(),
seek to the beginning, write the character, and then seek back to where we were, at which
point we can write some more characters.
Note that "streampos” is a defined type of some kind rather than ssmply a fixed fundamental
type like "long". Y ou should not assume particul ar types when working with file offsets and
positions, but instead save the value returned by tellp() and then use it later.
Inasimilar way, it's tricky to use absolute fil e offsets other than O when seeking in files. For
example, there are issues with binary files and with CR/LF trand ation. Y ou may be assuming
that a newline takes two characters when it only takes one, or vice versa.
seekp() also has atwo-parameter version:

ofs.seekp(pos, ios::beg); // from beginning

ofs.seekp(pos, ios::cur); // from current position

ofs.seekp(pos, ios..end); // from end
Asweve said before, this areaisin a state of flux, pending standardization. So future usage
may be somewhat different than shown here.

C++ Virtual Functions

Imagine that you are doing some graphics programming, with a variety of shapes to be output
to the screen. Initialy, you want to support Line, Circle, and Text. Each shape has an X,Y
origin and acolor.

24

C++ Tutorids

How might this be done in C++? One way isto use virtua functions. A virtual functionisa
function member of aclass, declared using the "virtua" keyword. A pointer to a derived class
object may be assigned to a base class pointer, and avirtual function called through the
pointer. If the function isvirtual and occurs both in the base class and in derived classes, then
the right function will be picked up based on what the base class pointer "really" points at.
For graphics, we can use a base class called Shape, with derived classes named Line, Circle,
and Text. Shape and each of the derived classes has avirtual function draw(). We create new
objects and point at them using Shape* pointers. But when we call adraw() function, asin:
Shape* p=new Ling(0.1, 0.1, Co_blue, 0.4, 0.4);

p->draw();
the draw() function for aLine is called, not the draw() function for Shape. This style of
programming is very common and goes by names like "polymorphism™ and "object-oriented
programming". To illustrate it further, here is an example of this type of programming for a
graphics application. Annotationsin /* */ explain in some detail what is going on.

#include <string.h>

#include <assert.h>

#include <iostream.h>

typedef double Coord;

/*
The type of X/Y points on the screen.
*/

enum Color {Co _red, Co_green, Co_blue};

/*
Colors.
*/

/[abstract base class for al shape types
class Shape {
protected:

Coord xorig; // X origin

Coord yorig; // Y origin

Color co; // color

/*
These are protected so that they can be accessed
by derived classes. Private wouldn't allow this.

These data members are common to all shape types.
*/

public:
Shape(Coord x, Coord y, Color c) :

25

C++ Tutorids

xorig(x), yorig(y), co(c) {} // constructor

/*

Constructor to initialize data members common to
all shape types.

*/

virtual ~Shape() {} // virtual destructor

/*

Destructor for Shape. It'savirtual function.
Destructors in derived classes are virtual also
because thisoneis declared so.

*/

virtual void draw() = O; // pure virtual draw() function

/*

Similarly for the draw() function. It's a purevirtual and
isnot called directly.

*/

h

/I line with X,Y destination
classLine : public Shape {

/*

Line isderived from Shape, and picks up its
data members.

*/

Coord xdest; // X destination
Coord ydest; // 'Y destination

/*
Additional data members needed only for Lines.
*/

public:
Line(Coord x, Coord y, Color ¢, Coord xd, Coord yd) :
xdest(xd), ydest(yd),
Shape(x, vy, ¢) {} // constructor with base initialization

/*
Construct aLine, calling the Shape constructor as well
to initialize data members of the base class.

26

C++ Tutorids

*/
~Ling() { cout << "~Line\n";} // virtual destructor
/*
Destructor.
*/
void draw() // virtual draw function
{
Cout << IlLinell << n Il;
cout << xorig << ", " << yorig << ", " <<int(co);
cout << ", " << xdest << ", " << ydest;
cout << ")\n";
}
/*
Draw aline.
*/
b

/I circle with radius
class Circle : public Shape {
Coord rad; // radius of circle

/*
Radius of circle.
*/
public:
Circle(Coord x, Coord y, Color ¢, Coordr) : rad(r),
Shape(x, vy, ¢) {} // constructor with base initialization
~Circle() { cout << "~Circlé\n";} // virtua destructor
void draw() // virtual draw function
{
cout << "Circle" << "(";
cout << xorig << ", " << yorig << ", " <<int(co);
cout << ", " <<rad;
cout << ")\n";
}
1

/I text with characters given
class Text : public Shape {
char* str; // copy of string

27

C++ Tutorids

public:
Text(Coord x, Coord y, Color ¢, const char* s) :
Shape(x, Yy, c) // constructor with base initialization
{
str = new char[strlen(s) + 1];
assert(str);
strepy(str, S);

/*

Copy out text string. Note that thiswould be done differently
if we were taking advantage of some newer C++ featureslike
exceptions and strings.

*/
~Text() {delete[] str; cout << "~Text\n";} // virtual dtor
/*
Destructor; delete text string.
*/
void draw() // virtual draw function
{
Cout << IITeXtII << n Il;
cout << xorig << ", " << yorig << ", " <<int(co);
cout << ", " << str;
cout << ")\n";
}
1
int main()
{
constint N =5;
inti,
Shape* sptrg[NJ;
/*

Pointer to vector of Shape* pointers. Pointersto classes
derived from Shape can be assigned to Shape* pointers.
*/

Il initialize set of Shape object pointers
sptrs[0] = new Ling(0.1, 0.1, Co_blue, 0.4, 0.5);
sptrg[1] = new Line(0.3, 0.2, Co_red, 0.9, 0.75);

sptrs[2] = new Circle(0.5, 0.5, Co_green, 0.3);
sptr[3] = new Text(0.7, 0.4, Co_blue, "Howdy!");

28

C++ Tutorids

sptrs[4] = new Circle(0.3, 0.3, Co _red, 0.1);

/*
Create some shape objects.
*/
// draw set of shape objects
for (i=0;i <N;i++)
sptrg[i]->draw();
/*

Draw them using virtua functionsto pick up the
right draw() function based on the actual object
type being pointed at.

*/

/I cleanup

for (i =0; i <N;i++)

delete sptrg[i];
/*
Clean up the objects using virtua destructors.
*/
return O;
}

When we run this program, the output is:

Lineg(0.1, 0.1, 2,04, 0.5)

Line(0.3,0.2,0,0.9, 0.75)

Circle(0.5,0.5, 1, 0.3)

Text(0.7, 0.4, 2, Howdy!)

Circle(0.3,0.3,0,0.1)

~Line

~Line

~Circle

~Text

~Circle
with enum color vaues represented by small integers.
A few additional comments. Virtual functions typically are implemented by placing a pointer
to ajump table in each object instance. This table pointer represents the "rea" type of the
object, even though the object is being manipulated through a base class pointer.
Because virtual functions usually need to have their function address taken, to store in atable,
declaring them inline as the above example does is often awaste of time. They will belaid
down as static copies per object file. There are some advanced techniques for optimizing
virtual functions, but you can't count on these being available.

29

C++ Tutorids

Note that we declared the Shape destructor virtual (there are no virtua constructors). If we had
not done this, then when we iterated over the vector of Shape* pointers, deleting each object in
turn, the destructors for the actual object types derived from Shape would not have been
called, and in the case above this would result in amemory leak in the Text class.

Shape is an example of an abstract class, whose purpose is to serve as a base for derived
classes that actually do the work. It is not possible to create an actual object instance of Shape,
because it contains at |east one pure virtual function.

30

C++ Tutorids

Templates

INTRODUCTION TO C++ TEMPLATESPART 1-FUNCTION TEMPLATES

In issue #007 we talked about the use of inline functions. Suppose that you wish to compute
the maximum of two quantities, and you define a C macro for this:
#define max(a, b) ((@) > (b) ?(a) : (b))
Thisworks OK until a case like:
max (x++, y++)
comes dong. Aninline function:
inline int max(int a, int b)
{

returna>b?a:b;

solves this problem. But what if you want amax() function for avariety of numeric types?
Y ou can define a slew of function prototypes:
int max(int, int);

long max(long, long);

double max(double, double);
and rely on function overloading to sort things out. Or you can define one function that might
work in all cases:

long double max(long double, long double);
since nothing can be bigger than along double, right? This last approach fails because there's
no guarantee that, for example, the size of along is less than the size of along double, and
assigning along to along double would in such a case result in loss of precision.
In C++ there is another way to approach this problem, using what are called parameterized
types or templates. We can define a function template:

template <class T> inline T max(T a, T b)

{
}

The preface "template <class T>" is used to declare atemplate. T is atemplate parameter, a
type argument to the template. When this template is used:

inta=37;

intb =47,

returna>b?a:b;

inti =max(a, b);

the type value of T will be "int", because aand b are integers. If instead | had said:
double a= 37.53;
double b =-47.91,

double d = max(a, b);
then T would have the type value "double". The process of generating an actual function from
afunction template is known as "instantiation". Note a so that "const T&" may be used instead
of "T"; we will be discussing this point in a future issue of the newsletter.

31

C++ Tutorids

This template will a'so work on non-numeric types, so long as they have the ">" operator
defined. For example:
classA {
public:
int operator>(const A&); // use "bool" return type
Il instead, if available

H

Ag
ADb;

A c=max(a, b);
Templates are a powerful but complex feature, about which we will have more to say.
Languages like C or Java(tm), that do not have templates, typically use macrosor rely on
using base class pointers and virtual functions to synthesize some of the properti es of
templ ates.
Templates in C++ are amore ambitious attempt to support “generic programming" than some
previous efforts found in other programming languages. Support for generic programming in
C++ is considered by some to be as important alanguage goa for C++ asis support for
object-oriented programming (using base/derived classes and virtua functions; see newsletter
issue #008). An example of heavy template use can be found in STL, the Standard Template
Library.

NEW C++ FEATURE - MEMBER TEMPLATES

In chapter 14 of the draft ANSI/ISO C++ standard is amention of something called member

templates. This featureisnew in away and not yet widely available, but worth mentioning
here.

Member templates are simply a generalization of templates such that a template can be aclass
member. For example:
#include <stdio.h>

template <class A, class B> struct Pair {
Ag
B b;

Pair(const A& ax, const B& bx) : a(ax), b(bx) {}

template <class T, class U> Pair(const Pair<T ,U>& p) :

. a(p-a), b(p.b) {}

int main()

{
Pair<short, float> x(37, 12.34);
Pair<long, long double> y(x);

32

C++ Tutorids

printf("%Ild %Lg\n", y.a, y.b);

return O;
}
Thisis an adaptation of a class found in the Standard Template Library. Note that an object of
class Pair<long, long double> is constructed from an object of class Pair<short, float>. By
using atemplate constructor it is possible to construct a Pair from any other Pair, assuming
that conversion from T to A and U to B are supported. Without the availability of template
constructors one could only declare constructors with fixed types like "Pair(int)" or else use
the template arguments to Pair itself, asin "Pair(A, B)".
In a similar way to function template use, it's possible to have usage like:
template <class T> struct A {
template <class U> struct B {/* stuff */};
b

A<double>::B<long> ab;
In this example, the type value of T within the nested template declaration would be "double”,
while the value of U would be "long".
There are afew restrictions on member templates. A destructor for aclass cannot be defined
as afunction template, nor may a function templ ate member of a class be virtual.

INTRODUCTION TO C++ TEMPLATESPART 2- CLASSTEMPLATES

To continue our introduction of C++ templates, we'll be saying afew things about class
templates in thisissue. Templates are a part of the language still undergoing major changes,
and it's tricky to figure out just what to say. But well cover some basics that are well accepted
and in current usage.
A skeleton for a class template, and definitions of amember function and a static dataitem,
looks likethis:
template <class T> class A {
void f();
static T x;

b
template <class T> void A<T>::f()

11 stuff
}

template <classT> T A<T>.:x =0;
T isaplaceholder for atemplate type argument, and is bound to that argument when the
template isinstantiated. For example, if | say:

A<double> &
then the type value of T is"double". The binding of template arguments and the generation of
an actual class from atemplate is a process known as "instantiation”. You can view atemplate
as a skeleton or macro or framework. When specific types, such as double, are added to this
skeleton, the result is an actual C++ class.

33

C++ Tutorids

Templ ate arguments may also be constant expressions:
template <int N> struct A {
/I stuff
1

A<-37> &
This feature is useful in the case where you want to pass a size into the template. For example,
a Vector template might accept atype argument that tells what type of elements will be
operated on, and a size argument giving the vector length:
template <class T, int N> class Vector {
/] stuff
b

Vector<float, 100> v;
A template argument may have a default specified (this feature is not widely available as yet):
template <class T =int, int N = 100> class Vector {

/I stuff
h
Vector<float, 50> v1; /I Vector<float, 50>
Vector<char> v2; /! V ector<char, 100>
Vector<> v3; /l Vector<int, 100>

To see how some of these basic ideas fit together, let's actually build a simple Vector templ ate,
with set() and get() functions:
template <class T, int N = 100> class Vector {
T vec[N];
public:
void set(int pos, T val);
T get(int pos);

b
template <class T, int N> void Vector<T, N>::set(int pos, T val)
{
if (pos<O0 || pos>=N)
; /1 give error of some kind
vec[pos| = v,
}
template <class T, int N> T Vector<T, N>::get(int pos)
{
if (pos<O0 || pos>=N)
; /1 give error of some kind
return vec[pos|;
}

C++ Tutorids

/I driver program

int main()

{
Vector<double, 10> v;
inti =0;
doubled =0.0;

/] set locations in vector

for (i = 0; i < 10; i++)
v.set(i, double(i * i));

/I get location va ues from vector

for (i =0;i<10;i++)
d = v.get(i);

return O;

}
Actual values are stored in a private vector of type T and length N. In areal Vector classwe
might overload operator[] to provide a natural sort of interface such as an actual vector has.
What would happen if we said something like:

Vector<char, -1000> v;
Thisis an example of code that islegal until the template is actually instantiated into a class.
Because a member like:

char vec[-1000];
isnot valid (you can't have arrays of negative or zero size), this usage will be flagged as an
error when instantiation is done.
The process of instantiation itself isabit tricky. If | have 10 translation units (source files),
and each uses an instantiated class:

Vector<unsigned long, 250>
where does the code for the instantiated class's member functions go? The templ ate definition
itself resides most commonly in a header file, so that it can be accessed everywhere and
because templ ate code has some different properties than other source code.
Thisis an extremely hard problem for acompiler to solve. One solution is to make all template
functions inline and duplicate the code for them per trand ation unit. Thisresultsin very fast
but potentially bulky code.
Another approach, which works if you have control over the object file format and the linker,
isto generate duplicate instantiations per object file and then use the linker to merge them.
Y et another approach is to create auxiliary files or directories ("repositories’) that have a
memory of what has been instantiated in which object file, and use that state file in
conjunction with the compiler and linker to control the instantiation process.
There are also schemes for explicitly forcing instantiation to take place. We'll discussthesein
afutureissue. The instantiation issue is usually hidden from a programmer, but sometimes
becomes visible, for example if the programmer notices that object file sizes seem bloated.

35

C++ Tutorids

INTRODUCTION TO TEMPLATESPART 3-TEMPLATE ARGUMENTS

In previous issues we talked about setting up aclass template:
template <class T> class A {
TX;
/] stuff
b
When this template is used:
A<double> &
the type "double" gets bound to the formal type parameter T, part of a process known as
instantiation. In this example, the instantiated class will have a data member "x" of type
double.
What sorts of arguments can be used with templates? Type arguments are alowed, including
"void":
template <class T> class A {
T* X;
b

A<void> g
The member x will be of type void* in this case. In the earlier example, using void as atype
argument would result in an instantiation error, because a data member of aclass (or any
object for that matter) cannot be of type void.
Usage like:

A<int [37][47]> al;

A< A<void> > a2;
isalso valid. Note that in the second example, the second space is required, because ">>" isan
operator meaning right shift.
It's d so possible to have non-type arguments. Constant expressions can be used:
template <class T, int n> class A {
T vec[n];
b

A<float, 100> &
Thisisuseful in specifying the size of an internal data structure, in this example a vector of
float[100]. The size could a so be specified viaa constructor, but in that case the size would
not be known at compile time and therefore dynamic storage would have to be used to allocate
the vector.
The address of an external object can be used:

template <char* cp>struct A { /* ... */ };

char c;
A<&c> g

or you can use the address of a function:
template <void (*fp)(int)> struct A { /* ... */ };

36

C++ Tutorids

void f(int) {}

A<f> g
This latter case might be useful if you want to passin a pointer of a function to be used
internally within the template, for example, to compare elements of a vector.
Some other kinds of constructs are not permitted as arguments:

- aconstant expression of floating type

- addresses of array elements
- addresses of non-static class members
- local types

- addresses of local objects
Two template classes (atemplate class is an instantiated class template, that is, atemplate with
specific arguments) refer to the same class if their template names are identical and in the
same scope and their arguments have identical values. For example:

template <class T, int n> struct A {};

typedef short* TT;

A<short*, 100> a1,
A<TT, 25*4> a2,
al and a2 are of the same type.

INTRODUCTION TO TEMPLATESPART 4 -SPECIALIZATIONS

In previous issues we've covered some of the basics of C++ templates. Recall that atemplate
isaclass or function skeleton, and is combined with specified type arguments to produce an
actual class or function.
Beyond this general mechanism, C++ also allows the programmer to define specialized classes
and functions that take the template and implement it for particular types of template
arguments.
Suppose, for example, that you have a String template, that supports strings of most anything -
- chars, ints, doubles, arbitrary class types, and so on. Now, it's pretty likely that strings of
characters will be used heavily, so it might make sense to specia case this combination of
templ ate and template argument:

template <class T> class String {

/] stuff

b

template <> class String<char> {
/] stuff

1

String<char> x;

37

C++ Tutorids

The "template <>" notation is fairly new and may not yet be implemented in your local
compiler.
This sequenceis a bit different from:
template <class T> class String {
/1 stuff
1

String<char> x;
In this second case, the default implementation of String is used, whereas in the specialization
case, the programmer overrides the default template and provides an implementation of
String<char>.
For afunction template, a specialization would be defined as:

template <class T> void f(T) {}

template <> void f(int) {}
It's also possible to have forward declarations of specializations:
template <class T> class String { } ;

template <> class String<double>;
or:
template <class T> void f(T) {}

template <> void f(unsigned short&);
A specialization must be declared or defined before use, so for example:
template <class T> int f(T) { return O;}

inti=1f(12.34);

template <> int f(double) { return 37;}
isinvalid.
An interesting quirk with function templates concerns the case where you have a C function,
mixed in with a function template and specialization:

extern "C" void f(int);

template <class T> int f(T) { return O;}

template <> int f(int)
{
f(37);
return O;
}
The f(37) call hereis not recursive. Both "void f(int)" and "int f(int)" match the call, and the
non-template is preferred in such a case.
It's dso possible to have nested speciaizations, asin:
template <class T> class A {
template <class U> class B {
template <class V> void f(V) {}

38

C++ Tutorids

1
h

template <> template <> template <>
void A<float>::B<double>::f(long double) {}
and you can specialize special member types such as constructors:
struct A {
template <class T> A(T) {}
b

template <> A::A(short) {}
or static data members:
template <class T> struct A {
template <class U> struct B {
staticint x;
};

h

template <> template <> int A<float>::B<long double>::x = 59;
Speciaizations are away of special-casing templates for particular argument types, and are
useful in avariety of applications. But they can also be abused and make code harder to
understand, especially if areader of the code doesn't pick up on the fact that specializations are
present.

INTRODUCTION TO TEMPLATES PART 5-FORCING INSTANTIATION

In previous issues we've talked about the process of template instantiation, in which template
parameters are bound to actual type arguments. For example:
template <class T> class A {};

A<int> g
At instantiation time, the template formal parameter T is assigned the type value "int".
Instantiation is done based on need -- the generated class A<int> will not be instantiated
unlessit has first been referenced or otherwise used.
The actual process of instantiation is done in various ways, for example during the link phase
of producing an executable program. But it is possible to explicitly force instantiation to occur
in afile. For example:
template <class T> class A {
TX;
void f();
b
template <class T> void A<T>::f() {}

template class A<double>;
will force the instantiation of A<double>.
The whole area of instantiation is still in a state of flux, and this feature may not be available
with your compiler.

39

C++ Tutorids

INTRODUCTION TO TEMPLATESPART 6 - FRIENDS

In earlier issues we've seen how atemplate is something like a class, except that it can be
parameterized, that is, type arguments can be supplied to create an actua class from atemplate
through the process of instantiation.
In C++ friends are used to give outside functions and classes access to private members of a
class. Friends can also be used with templates, in asimilar way. For example:

template <class T> class A {

int x;
friend void f();
H
void f()
{
A<double> g;
inti =ax;
}
int main()
{
f0);
return O;
}

In this example, the function f() gains access to the private members of all instantiated classes

that come from the template A, such as A<double>, A<char**>, and so on.

In asimilar way, awhole class can be granted access to private members of atemplate:
template <class T> class A {

int x;
friend class B;
h
classB {
public:
void f();
H
void B::f()
{
A<short> &
inti =ax;
}
int main()
{

C++ Tutorids

B b;
b.f();

return O;
}
Here, class B isafriend of template A, and so all of B's members can access the private
members of A<short>.
In an earlier issue, we talked about member templates. With this feature additional
combinations of friends and templates are possible.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is areference to the Java Devel opment Kit.

Use of Static

THE MEANING OF " STATIC"

Someone asked about the meaning of the term "static" in C++. This particular term is perhaps
the most overworked one in the language. It's both a descriptive word and a C++ keyword that
isused in various ways.
"static" as a descriptive term refers to the lifetime of C++ memory or storage locations. There
are several types of storage:

- static

- dynamic (heap)

- auto (stack)
A typical storage layout scheme will have the following arrangement, from lowest to highest
virtual memory address:

text (program code)

static (initialized and uninitialized data)

heap

(large virtual address space gap)

41

C++ Tutorids

stack
with the heap and stack growing toward each other. The C++ draft standard does not mandate
this arrangement, and this example isonly an illustration of one way of doing it.
Static storage thus refers to memory locations that persist for the life of the program; global
variables are static. Stack storage comes and goes as functions are called ("stack frames"), and
heap storage is alocated and deallocated using operators new and delete. Note that usage like:
void f()

{
}

also refers to storage that persists throughout the program, even though x cannot be used
outside of f() to refer to that storage.
So we might say that "static" as a descriptive term is used to describe the lifetime of memory
locations. static can also be used to describe the visibility of objects. For example:

staticint x = 37;

static int x = 37;

static void f() {}
saysthat x and f() are not visible outside the source file where they're defined, and
void f()

{
}

saysthat x is not visible outside of (). Visibility and lifetime are not the same thing; an object
can exist without being visible.
So far we've covered the uses of static that are found in C. C++ adds a couple of additional
twists. It is possible to have static members of a C++ class:
classA {
public:
static int x;
static void f();
inty;

static int x = 47;

H
int A::x=0;

void A::f() {}
A static data member like A::x is shared across al object instancesof A. That is, if | define
two object instances:

A al;

A a2;
then they have the same x but y is different between them. A static data member is useful to
share information between object instances. For example, in issue #010 we talked about using
aspecialized allocator on a per-class basis to allocate memory for object instances, and a static
member "freelist" was used as part of the implementation of this scheme.
A static function member, such as A::f(), can be used to provide utility functionsto a class.
For example, with aclass representing calendar dates, a function that tells whether agiven

42

C++ Tutorids

year is aleap year might best be represented as a static function. The function is related to the
operation of the class but doesn't operate on particular object instances (actual calendar dates)
of the class. Such afunction could be made global, but it's cleaner to have the function as part
of the Date package:
class Date {
staticint is_leap(int year); // use bool if available
public:
/] stuff
1

In this example, is_|leap() is private to Date and can only be used within member functions of
Date, instead of by the whole program.
static meaning "local to afile" has been devalued somewhat by the introduction of C++
namespaces; the draft standard states that use of static is deprecated for objects in namespace
scope. For example, saying:
static int x;
static void f() {}
isequivalent to:
namespace {
int x;
void f() {}

That is, an unnamed namespace is used to wrap the static declarations. All unnamed
namespaces in asingle source file (trandation unit) are part of the same namespace and differ
from similar namespaces in other translation units.

LOCAL STATICSAND CONSTRUCTORS/DESTRUCTORS

There's one additional interesting angle on the use of static. Suppose that you have:
classA {
public:
AQ);
~AQ);
b

void f()

{
static A &

This object has a constructor that must be called at some point. But we can't call the
constructor each time that f() is called, because the object is static, that is, exists for the life of
the program, and should be constructed only once. The draft standard says that such an object
should be constructed once, the first time execution passes through its declaration.
This might be implemented internally by a compiler as:
void f()
{
staticint__ first=1;
static A &

C++ Tutorids

if (__first){
aA:A(); I/ conceptual, not legal syntax
__first=0;

}

/I other processing
}
If f() is never called, then the object will not be constructed. If it is constructed, it must be
destructed when the program terminates.

Mutable

In C++ it's possible to have a class object instance that is constant and cannot be modified by
the program, once initialy set up. For example:
classA {
public:
int x;
AQ);
b

const A &

void g()
{

ax=37:

isillegal. In asimilar way, invoking a non-const member function on a const object is also
illegal:
classA {
public:
int x;
A();
void f();
1

const A &
void g()

af();

C++ Tutorids

The reason for this latter prohibition is due to separate compilation. A::f() may be defined in
some other translation unit, and there's no way of knowing whether it modifies the object upon
which it operates.
It is possible to define const member functions:
void f() congt;
that are allowed to operate on a const object instance. Such a function does not modify the
instance it operates on. The type of the "this" pointer for aclass T isnormally:
T *const this;
meaning that the pointer cannot be changed. Within a const member function, the typeis.
const T *const this;
meaning that neither the pointer nor the pointed-at object instance can be modified.
Recently anew feature has been added to C++ to selectively allow for individual data class
members to be modified even for a const object instance, and lessen the need for casting away
of const. For example:
classA {
public:
mutableint x;
AQ);
1

const A &

void f()
{

}

Thissays that "x" can be modified even though it's a member of a const object instance.
How useful "mutable” turns out to be remains to be seen. One cited example for itsuse is
within classes whose object instances appear constant but actually do change their state
internally. For example:

ax=37:

class Box {
doublexll, yll; I/l lower left X,Y
double xur, yur; Il upper right X,Y
double & Il cached area
public:
double area() const
{

a= (xur - xIl) * (yur - yll);
return g

}
class Box(double x1, double y1, double x2, double y2) :
xI(x1), yll(yl), xur(x2), yur(y2)
{
}
b

const Box b(1.0, 1.0, 11.0, 14.0);

45

C++ Tutorids

void f()
{
b.area();
}
whichisillega usage unless we instead say:
classBox {
doublexll, yll; Il lower left X,Y

double xur, yur; Il upper right X,Y
mutabledoublea; // cached area

public:
double area() const
{
a= (xur-xI)* (yur - yll);
return g
}

class Box(double x1, double y1, double x2, double y2) :
xI(x1), yll(yl), xur(x2), yur(y2)

{

}
1
const Box b(1.0, 1.0, 11.0, 14.0);
void f()

b.area();

Explicit

In C++ it is possible to declare constructors for a class, taking a single parameter, and use
those constructors for doing type conversion. For example:
classA {
public:
A(int);
b

void f(A) {}

void g()

C++ Tutorids

{
Aal =37
A a2 =A(47),
A a3(57);
al = 67;
f(77);

}

A declaration like:

A al =37,
saysto call the A(int) constructor to create an A object from the integer value. Such a
constructor is called a "converting constructor".

However, this type of implicit conversion can be confusing, and there is away of disabling it,

using anew keyword "explicit" in the constructor declaration:

classA {

public:
explicit A(int);

b

void f(A) {}

void g()

{
Aal=37;, /lillega
Aa2=A(47); I/ OK
A a3(57); /I OK
al = 67, /l'illegal
f(77); /lillegal

}

Using the explicit keyword, a constructor is declared to be
"nonconverting”, and explicit constructor syntax is required:

classA {

public:
explicit A(int);
b

void f(A) {}

47

C++ Tutorids

void g()
{ A al = A(37);
A &2 = A(47);
A aB3(57);
al = A(67);
f(A(77));
Note}that an expression such as:
A(47)

isclosely related to function-style casts supported by C++. For example:
doubled = 12.34;

inti=int(d);

Standard Template Library

INTRODUCTION TO STL PART 1-GETTING STARTED

STL stands for Standard Template Library, and is anew feature of C++. We will be presenting
some of the basic features of STL in this and subsequent issues. STL may not be available
with your local C++ compiler as yet. The examples presented here were developed with
Borland C++ 5.0. Third-party versions of STL are available from companies like ObjectSpace
and Rogue Wave, and HP's original implementation (which may be obsolete) is available free
on the Internet.
To get an idea of the flavor of STL, let's consider a simple example, one where we wish to
create a set of integers and then shuffle them into random order:

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;
int main()

{

vector<int> v;

C++ Tutorids

for (inti =0;i < 25; i++)
v.push_back(i);

random_shuffle(v.begin(), v.end());

for (intj = 0;] < 25; j++)
cout << v[j] << "™,
cout << endl;

return O;
}
When run, this program produces output like:
6119231812172420154221051191331416082127
There's quite a bit to say about this example. In the first place,
STL isdivided into three logical parts:

- containers
- iterators

- algorithms
Containers are data structures such as vectors. They are implemented as templ ates, meaning
that a container can hold any type of data element. In the example above, we have
"vector<int>", or avector of integers.
Iterators can be viewed as pointers to elements within a container.
Algorithms are functions (function templates actually) that operate on data in containers.
Algorithms have no special knowledge of the types of data on which they operate, meaning
that an algorithm is generic in its application.
We include header files for the STL features that we want to use. Note that the headers have
no ".h" on them. Thisis anew feature in which the .h for standard headersis dropped.
The next line of interest is:

using namespace std;
We discussed namespaces in earlier newsdletter issues. This statement means that the namesin
namespace "std" should be made available to the program. Standard libraries use std to avoid
the problem mentioned earlier where library elements (like functions or class names) conflict
with names found in other libraries.
Theline:

vector<int> v;
declares a vector of integers, and then:

for (inti =0;i<25;i++)

v.push_back(i);

adds the numbers 0-24 to the vector, using the push_back() member function.
Actual shuffling is done with the line:

random_shuffle(v.begin(), v.end());
where v.begin() and v.end() are iterator arguments that delimit the extend of thelist to be
shuffled.
Finaly, we display the shuffled list of integers, using an overloaded operator[] on the vector:

49

C++ Tutorids

for (intj=0;j < 25; j++)
cout << Vv[j] <<" "

cout << endl;
This code is quite generic. For example, we could change:

vector<int> v;
to:

vector<float> v;
and fill the vector with floating-point numbers. The rest of the code that shuffles and displays
the result would not change.
One point to note about STL performance. The library, at |least the version used for these
examples, is implemented as a set of header files and inline functions (templates). This
structure is probably necessary for performance, due to the interna use of various helper
functions (for example, begin() in the above example). Such an architecture is very fast but
can cause code size blowupsin some cases.
We will be saying more about STL in future issues. The library is not yet in widespread use,
and it's too early to say how it will shake out.

INTRODUCTION TO STL PART 2-VECTORS, LISTS, DEQUES

In the previous issue we introduced the C++ Standard Template Library. STL is acombination
of containers used to store data, iterators on those containers, and algorithms to manipulate
containers of data. STL uses templates and inline functions very heavily.
In thisissue welll talk about some of the types of containers that are available for holding data,
namely vectors, lists, and deques.
A vector islike asmart array. Y ou can use [] to efficiently access any element in the vector,
and the vector grows on demand. But inserting into the middle of a vector is expensive,
because elements must be moved down, and growing the vector is costly because it must be
copied to another vector internally.
A listislike a doubly-linked list that you've used before. Insertion or splicing of subsequences
isvery efficient at any point in the list, and the list doesn't have to be copied out. But looking
up an arbitrary element is slow.
A deque classically stands for "double-ended queue”, but in STL means acombination of a
vector and alist. Indexing of arbitrary elementsis supported, as are list operations like
efficiently popping the front item off alist.
To illustrate these notions, we will go through three examples. The first one is the same as
given in the last newsletter issue, and shows how avector might be used to store alist of 25
numbers and then shuffle them into random order:

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;
int main()

{

vector<int> v;

50

C++ Tutorids

for (inti =0;i < 25; i++)
v.push_back(i);

random_shuffle(v.begin(), v.end());

for (intj = 0;] < 25; j++)
cout << v[j] << "™,
cout << endl;

return O;

}

With lists, we can't use [] to index the list, nor is random_shuffle() supported for lists. So we
make do with:

#include <list>
#include <algorithm>
#include <iostream>

using namespace std;

int main()
{

list<int> v;

for (inti =0;i <25; i++)
v.push_back(i);

/Irandom_shuffle(v.begin(), v.end());

for (intj=0;] <25;j++){
cout << v.front() <<" ";
v.pop_front();

cout << endl;

return O;

where we add elements to the list, and then simply retrieve the element at the front of thelist,
print it, and pop it off the list.
Finally, we present a hybrid using deques. random_shuffle() can be used with these, because
they have properties of vectors. But we can also use list operations like front() and
pop_front():

#include <algorithm>

#include <iostream>

#include <deque>

using namespace std;

51

C++ Tutorids

int main()
{

deque<int> v;

for (inti =0;i < 25; i++)
v.push_back(i);

random_shuffle(v.begin(), v.end());

for (intj =0;j <25;j++){
cout << v.front() <<" ";
v.pop_front();

cout << endl;

return O;
}
Which of vectors, lists, and deques you should use depend on the application, of course. There
are several additional container types that we'll be looking at in future issues, including stacks
and queues. It's also possible to define your own container types.
The performance of operations on these structuresis defined in the standard, and can be relied
upon when designing for portability.

INTRODUCTION TO STL PART 3-SETS

In the last issue we talked about several STL container types, namely vectors, lists, and
deques. STL aso has set and multiset, where set is acollection of unique values, and multiset
is aset with possible non-unique values, that is, keys (elements) of the set may appear more
than one time. Sets are maintained in sorted order at all times.
To illustrate the use of sets, consider the following example:

#include <iostream>

#include <set>

using namespace std;

int main()

{ typedef set<int, less<int> > Setint;
[Itypedef multiset<int, less<int> > Setlnt;
Setint s;
for (inti =0;i<10;i++){

s.insert(i);
s.insert(i * 2);

52

C++ Tutorids

}
SetInt::iterator iter = s.begin();

while (iter != s.end()) {
cout << *jter << " ™
iter++;

}

cout << endl;
return O;

This exampleis for set, but the usage for multiset is aimost identical. The first item to consider
istheline:

typedef set<int, less<int> > Setlnt;
This establishes atype "SetInt", which is a set operating on ints, and which uses the template
"less<int>" defined in <function> to order the keys of the set. In other words, set takes two
type arguments, the first of which is the underlying type of the set, and the second a template
class that defines how ordering isto be done in the set.
Next, we use insert() to insert keysin the set. Note that some duplicate keys will be inserted,
for example "4".
Then we establish an iterator pointing at the beginning of the set, and iterate over the elements,
outputting each in turn. The code for multiset isidentical save for the typedef declaration.
The output for set is:

012345678910121416 18
and for multiset:

0012234456678891012141618
STL aso provides bitsets, which are packed arrays of binary values. These are not the same as
"vector<bool>", which is avector of Booleans.

INTRODUCTION TO STL PART 4- MAPS

In the previous issue we talked a bit about STL sets. In thisissue we'll discuss another data
structure, maps. A map is something like an associative array or hash table, in that each
element consists of akey and an associated value. A map must have unique keys, whereas
with amultimap keys may be duplicated.
To see how maps work, let's look at a simple application that counts word frequency. Words
are input one per line and the total count of each is output.

#include <iostream>

#include <string>

#include <map>

using namespace std;
int main()

{

53

C++ Tutorids

typedef map<string, long, less<string> > MAP;
typedef MAP::value_type VAL,;

M AP counter;
char buf[256];

while (cin >> buf)
counter[buf]++;

MAP::iterator it = counter.begin();

while (it != counter.end()) {
cout << (*it).first << ™ " << (*it).second << endl;
it++;

}

return O;

}
Thisisashort but somewhat tricky example. We first set up atypedef for:

map<string, long, less<string> >
which is a map template with three template arguments. The first isthe type of the key, in this
example a string. The second is the value associated with the key, in this case along integer
used as acounter. Finaly, because the keys of the map are maintained in sorted order, we
provide atemplate comparison function (see issue #016 for another example of this).
Another typedef we establish but do not use in thissimple example isthe VAL type, whichis
atemplate of type "pair<string,long>". pair is used internaly within STL, and in thiscase is
used to represent amap element key/value pair. So VAL represents an element in the map.
We then read lines of input and insert each word into the map. The statement:

counter[buf]++;
does severa things. First of dl, buf isachar*, not a string, and must be converted viaa
constructor. What we've said is equivalent to:

counter[string(buf)]++;
operator|] is overloaded for maps, and in this case the key is used to |ook up the element, and
return along&, that is, areference to the underlying value. This value is then incremented (it
started at zero).
Finaly, we iterate over the map entries, using an iterator. Note that:

(*it).first
cannot be replaced by:

it->first
because "*" is overloaded. When * is applied to "it", it returns a pair<string,key> object, that
is, the underlying type of elementsin the map. We then reference "first" and "second", fields
in pair, to retrieve keys and vaues for output.
For input:

a

b

c

C++ Tutorids

a
b
output is:
az2
b2
cl
There are some complex ideas here, but map is avery powerful feature worth mastering.

INTRODUCTIONTO STL PART 5-BIT SETS

We've been looking at various types of data structures found in the Standard Template
Library. Another one of these is bit sets, offering space-efficient support for sets of bits. Let's
look at an example:

#include <iostream>

#include <bitset>

using namespace std;

int main()

{
bitset<16> b1("1011011110001011");
bitset<16> b2;

b2 = ~b1;

for (inti =b2.size() - 1;i >=0;i--)
cout << b2[i];
cout << endl;

return O;

A declaration like:

bitset<16> b1("1011011110001011");
declares a 16-long set of bits, and initializes the value of the set to the specified hits.
We then operate on the bit set, in this example performing abitwise NOT operation, that is,
toggling all the bits. The result of this operation is stored in b2.
Finaly, we iterate over b2 and display al the bits. b2.size() returns the number of bitsin the
set, and the [] operator is overloaded to provide access to individual bits.
There are other operations possible on bit sets, for example the flip() function to toggle an
individual bit.

INTRODUCTION TO STL PART 6- STACKS

We're nearly done discussing the basic data structures underlying the Standard Template
Library. One more worth mentioning is stacks. In STL astack is based on avector, deque, or
list. An example of stack usageis:

#include <iostream>

55

C++ Tutorids

#include <stack>
#include <list>

using namespace std;

int main()
{
stack<int, list<int> > stk;

for (inti =1;i<=10;i++)
stk.push(i);

while (!stk.empty()) {
cout << stk.top() << endl;
stk.pop();

}

return O;

}
We declare the stack, specifying the underlying type (int), and the sort of list used to represent
the stack (list<int>).
We then use push() to push items on the stack, top() to retrieve the value of the top item on the
stack, and pop() to pop items off the stack. empty() is used to determine whether the stack is
empty or not.
We will move on to other aspects of STL in future issues. One data structure not discussed is
gueues and priority_queues. A queue is something like a stack, except that it's first-in-first-out
instead of last-in-first-out.

INTRODUCTION TO STL PART 7-ITERATORS

In previous issues we've covered various STL container types such as lists and sets. With this
issue we'll start discussing iterators. Iteratorsin STL are mechanisms for accessing data
elementsin containers and for cycling through lists of elements.
Let's start by looking at an example:

#include <algorithm>

#include <iostream>

using namespace std;

const int N = 100;

void main()

{
int arr[N];
arr[50] = 37,

56

C++ Tutorids

int* ip = find(arr, arr + N, 37);
if ip==arr +N)
cout << "item not found in array\n";
else
cout << "found at position " <<ip - arr << "\n";
}
In this example, we have a 100-long array of ints, and we want to search for the location in the
array where a particular value (37) is stored. To do this, we call find() and specify the starting
point ("arr") and ending point ("arr + N") in the array, along with the vaue to search for (37).
Anindex is returned to the value in the array, or to one past the end of the array if the valueis
not found. In this example, "arr”, "arr + N", and "ip" are iterators.
This approach works fine, but requires some knowledge of pointer arithmetic in C++. Another
approach looks like this:
#include <algorithm>
#include <vector>
#include <iostream>

using namespace std;
const int N = 100;

void main()

{

vector<int> iv(N);
iv[50] = 37,

vector<int>::iterator iter = find(iv.begin(), iv.end(), 37);
if (iter == iv.end())
cout << "not found\n";
else
cout << "found at " << iter - iv.begin() << "\n";
}
This code achieves the same end, but is at ahigher level. Instead of an actual array of ints, we
have avector of ints, and vector is a higher-level construct than a primitive C/C++ array. For
example, avector has within in it knowledge of how longit is, so that we can say "iv.end()" to
refer to the end of the array, without reference to N.
In future issues we will be looking at several additional examples of iterator usage.

INTRODUCTION TO STL PART 8- ADVANCE() AND DISTANCE()

In the last issue we started discussing iterators. They are used in the Standard Template
Library to provide access to the contents of data structures, and to cycle across multiple data
elements.

We presented two examples of iterator usage, the first involving pointers, the second a higher-
level construct. Both of these examples require some grasp of pointer arithmetic, a daunting

57

C++ Tutorids

subject. There's another way to write the example we presented before, using acouple of STL
iterator functions:

#include <algorithm>

#include <iterator>

#include <vector>

#include <iostream>

using namespace std;

const int N = 100;

void main()

{
vector<int> iv(N);
iv[50] = 37,
iv[52] = 47,

vector<int>::iterator iter = find(iv.begin(), iv.end(), 37);
if (iter == iv.end()) {
cout << "not found\n";

}
else{
intd=0;
distance(iv.begin(), iter, d);
/[cout << "found at " << iter - iv.begin() << "\n";
cout << "found at " << d << "\n";
}
advance(iter, 2);

cout << "value =" << *iter << "\n";

}
The function distance() computes the distance between two iterator values. In this example,
we know that we're starting at "iv.begin()", the beginning of the integer vector. And we've
found amatch at "iter", and so we can use distance() to compute the distance between these,
and display this result. Note that more recently distance() has been changed to work more like
aregular function, with the beginning and ending arguments supplied and the difference
returned as the result of the function:

d = distance(iv.begin(), iter);
A similar issue comes up with advancing an iterator. For example, it's possible to use "++" for
this, but cumbersome when you wish to advance the iterator alarge value. Instead of ++,
advance() can be used to advance the iterator a specified number of positions. In the example
above, we move the iterator forward 2 positions, and then display the value stored in the
vector at that location.
These functions provide an aternative way of manipulating iterators, that does not depend so
much on pointer arithmetic.

58

C++ Tutorids

INTRODUCTION TO STL PART 9- SORTING
We've spent the last couple of issues discussing STL iterators, which are used to access data

structures. We will now gart discussing some of the actual STL algorithms that can be applied

to data structures. One of these is sorting.

Consider asimple example of a String class, and a vector of Strings:

#include <vector>
#include <algorithm>
#include <iostream>
#include <assert>
#include <string>

class String {
char* str;

public:
String()

String(char* s)

str = strdup(s);

assert(str);
?nt operator<(const String& s) const
{ return strcmp(str, s.str) <0;
i)perator char*()
i return str;

H

using namespace std;

char* list[] = {"epsilon”, "omega’, "theta’, "rho",
"apha", "beta’, "phi", "gamma", "delta'};

const int N = sizeof(list) / sizeof(char*);

int main()
{

inti,j;

vector<String> v;

59

C++ Tutorids

for (i = 0; i <N;i++)
v.push_back(String(list[i]));

random_shuffle(v.begin(), v.end());

for (j =0;] <N;j++)
cout << v[j] << "™,
cout << endl;

sort(v.begin(), v.end());

for (j =0;] <N;j++)
cout << Vv[j] << "™,
cout << endl;

return O;

}
This String class provides a thin layer over char* pointers. It is provided for illustrative
purposes rather than as amodel of how to write agood String class.
We first build avector of String objects by iterating over the char* list, calling a String
constructor for each entry in turn. Then we shuffle the list, display it, and then sort it by
calling sort() with acouple of iterator parameters v.begin() and v.end(). Output looks like:

phi delta beta theta omega a pha rho gamma epsilon

alpha beta delta epsilon gamma omega phi rho theta
There are a couple of things to note about this example. If we commented out the operator<
function, the example would still compile, and the < comparison would be done by converting
both Strings to char* using the conversion function we supplied. Comparing actual pointers,
that is, comparing addresses, is probably not going to work, except by chance in a case where
thelist of char* isaready in sorted order.
Also, sort() is not stable, which means that the order of duplicate itemsis not preserved.
"stable_sort" can be used if this property is desired.
In the next few issues, we'll be looking at some of the other algorithms found in STL.

INTRODUCTION TO STL PART 10- COPYING

In the last issue we started discussing the standard STL agorithmsthat are available, giving an
example of sorting. Another of these is copying, which we can illustrate with asimple
example:

#include <algorithm>

#include <iostream>

using namespace std;

intg]={1,2,34,5,6,7,8,9,10,0,0,0};
int b[13];

int main()

60

C++ Tutorids

inti=0;

copy(a a+ 13, b);

for (i =0;i<13;i++)
cout << b[i] <<™" ™

cout << endl;

copy_backward(a, a+ 10, a+ 13);
for (I=0;i<13;i++)

cout << gli] <<"";
cout << endl;

copy(b, b+ 10, b + 3);
for (I=0;i<13;i++)

cout << p[i] << " ";
cout << endl;

return O;

}
In thefirst case, we want to copy the contents of "a" to "b". We specify a couple of iterators
"a" and "a+ 10" to describe the region to be copied, and another iterator "b" that describes the
beginning of the destination region. In the second example, we do a similar thing, except we
copy backwards starting with the ending iterator. copy_backward() isimportant when source
and destination overlap. In the third example, we copy avector to itself, sort of a"rolling"
copy. The results of running this program are:

12345678910000

12312345678910

1231231231231
As with previous examples, we could replace primitive arrays with vector<int> types, and use
begin() and end() as higher-level iterator mechanisms.
Copying is alow-level, efficient operation. It does no checking while copying, so, for
example, if the destination array istoo small, then copying will run off the end of the array.

INTRODUCTION TO STL PART 11 - REPLACING

In the last issue we illustrated how one can do copying using STL algorithms. In thisissue
we'll talk about replacing abit, that is, how to substitute elements in a data structure by use of
iterators and algorithms that perform the actual replacement.
The first example uses replace() and replace_copy():

#include <algorithm>

#include <iostream>

using namespace std;

int vecl[10] =

1, 2, 10,
int vec2[10] = 10

5,9,
1,2,10,5,9

Lt Wanten)

61

C++ Tutorids

int vec3[10];

int main()
{
inti =0;

replace(vecl, vecl + 10, 10, 20);

for (i =0;i<10;i++)
cout << vecl[i] << "™
cout << endl;

replace_copy(vec2, vec2 + 10, vec3, 10, 20);

for (i =0;i<10;i++)

cout << vecz[i] << " "
cout << endl;
for (i =0; i <10;i++)

cout << vec3[i] << " "
cout << endl;

return O;
}

In both cases we replace all values of "10" in the vectors with the value "20". replace_copy()
islike replace(), except that the replacing is not done in place, but instead is sent to a specified
location described by an iterator (in this case, "vec3").
The output of this programiis:

1220592032720

1210591032710

1220592032720
A more general form of replacement uses replace _if(), along with a specified predicate
template instance:

#include <algorithm>

#include <iostream>

using namespace std;
int vecl[10] ={1, 2, 10, 5, 9, 10, 3, 2, 7, 10};

template <class T> classis_odd : public unary_function<T, bool>

{
public:
bool operator()(const T& x)
return (x % 2) '= 0;
}
b

62

C++ Tutorids

int main()
{
inti=0;

replace_if(vecl, vecl + 10, is_odd<int>(), 59);

for (i =0; i <10;i++)
cout << vecl[i] <<" "
cout << endl;

return O;

In this example, is_odd<T> is aclass template that is used to determine whether avalue of

type T is even or odd. The constructor call, is_odd<int>(), creates an object instance of the

template where T is "int". replace _if() calls operator() of the template object to evaluate

whether a given value should be replaced.

This program replaces odd values with the value 59. Output is:
5921059591059 259 10

Thereisalso replace _copy_if(), which combines replace_copy() and replace_if() functions.

INTRODUCTION TO STL PART 12-FILLING

In asimilar vein to some of our previous STL examples, here isan illustration of how to fill a

data structure with a specified value:
#include <algorithm>
#include <iostream>

using namespace std;

int vecl[10];
int vec2[10];

int main()
{
fill(vecl, vecl + 10, -1);
for (inti =0;i < 10; i++)
cout << vecl[i] <<"";
cout << endl;

fill_n(vec2, 5, -1);

for (intj =0;j < 10; j++)
cout << vecz[j] << " "

cout << endl;

return O;

63

C++ Tutorids

fill() fills according to the specified iterator range, whilefill_n() fills a specified number of
locations based on a starting iterator and a count. The results of running this program are:
-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-100000

INTRODUCTION TO STL PART 13- ACCUMULATING

Another ssimple algorithm that STL makes avail able is accumulation, for example summing a
set of numeric values. An example of this would be:

#include <iostream>

#include <numeric>

using namespace std;
intvec[] ={1,2, 3,4, 5};

int main()
{

int sum = accumulate(vec, vec + 5, 0);

cout << sum << endl;

int prod = accumulate(vec, vec + 5, 1, times<int>());
cout << prod << endl;

return O;
}
In this example, we specify iterators for a vector of integers, along with an initia value (0) for
doing the summation.
By default, the "+" operator is applied to the values in turn. Other operators can be used, for
example "*" in the second example. In this case the starting value is 1 rather than 0.

INTRODUCTION TO STL PART 14 - OPERATING ON SETS

We've been looking at various algorithms that can be used on STL containers. Another group
of these are some agorithms for operating on ordered sets of data, illustrated by asimple
example:

#include <iostream>

#include <algorithm>

#include <vector>

using namespace std;
int setl]] ={1, 2, 3};

intset?[] ={2, 3, 4};
vector<int> set3(10);

C++ Tutorids

int main()

{
vector<int>::iterator first = set3.begin();

vector<int>::iterator last =
set_union(setl, setl + 3, set2, set2 + 3, first);

while (first = last) {
cout << *first << " ";
first++;

}

cout << endl;

return O;
}

In the example we set up two ordered sets of numbers, and then take their union. We specify
two pairs of iterators to delimit the input sets, along with an output iterator.

Algorithms are provided for taking union, intersection, difference, and for determining
whether one set of elementsis a subset of another set.

Exception Handling

INTRODUCTION TO EXCEPTION HANDLING PART 1-A SIMPLE EXAMPLE

In this and subsequent issues we will be discussing some aspects of C++ exception handling.

To start this discussion, let's consider a ssimple example. Suppose that you are writing a
program to manipulate calendar dates, and want to check whether agiven year isin the 20th
century (ignoring the issue of whether the 21st century startsin 2000 or 2001!).
Using exceptions, one way to do this might be:

#include <iostream.h>

class DateException {
char* err;
public:
DateException(char* s) {err = s;}
void print() const { cerr << err << endl;}

H

/I afunction that operates on dates
void g(int date)

65

C++ Tutorids

{
if (date < 1900)
throw DateException("date < 1900");
if (date > 1999)
throw DateException("date > 1999");
Il process date ...
}
/I some code that uses dates
void f()
{
0(1879);
}
int main()
{
try {
f0);
}
catch (const DateException& de) {
de.print();
return 1,
}
return O;
}
The basic idea here is that we have atry block:
try {
f0;
}

Within this block, we execute some code, in this case a function call f(). Then we have alist of
one or more handlers:
catch (DateException de) {
de.print();
return 1;
}
If an abnorma condition arisesin the code, we can throw an exception:
if (date < 1900)
throw DateException("date < 1900");
and have it caught by one of the handlers at an outer level, that is, execution will continue at
the point of the handler, with the execution stack unwound.
An exception may be a class object type such as DateException, or afundamental C++ type
like an integer. Obviously, aclass object type can store and convey more information about
the nature of the exception, asillustrated in this example. Saying:
throw -37,
will indeed throw an exception, which may be caught somewhere, but thisidiom is not
particularly useful.

66

C++ Tutorids

What if the handler we declare is changed dightly, asin:
catch (DateException* de) {
de->print();
return 1;
}
In this case, because an object of type DateException is thrown, rather than a DateException*
(pointer), no corresponding handler will be found in the program. In that case, the runtime
system that handles exception processing will call aspecia library function terminate(), and
the program will abort. One way to avoid this problem is to say:

main()
{
try {
body_of program();
E:atch (-){
// dl exceptions go through here
return 1,
}
return O;
}

where"..." will catch any exception type.

We will explore various details of exception handling in future issues, but one general
comment isin order. C++ exceptions are not the same as low-level hardware interrupts, nor
are they the same as UNIX signals such as SIGTERM. And there's no linkage between
exceptions such as divide by zero (which may be alow-level machine exception) and C++
exceptions.

INTRODUCTION TO EXCEPTION HANDLING PART 2- THROWING AN
EXCEPTION

In the last issue we introduced C++ exception handling. In thisissue we'll go more into detail
about throwing exceptions.
Throwing an exception transfers control to an exception handler. For example:

void f()

throw 37;
}
void g()
{
try { /I try block
f0);
catch (inti) { /I handler or catch clause
}
}

67

C++ Tutorids

In this exampl e the exception with value 37 is thrown, and control passes to the handler. A
throw transfers control to the nearest handler with the appropriate type. "Nearest” meansin the
sense of stack frames and try blocks that have been dynamically entered.
Typically an exception that isthrown is of class type rather than a simple constant like "37".
Throwing aclass object instance allows for more sophisticated usage such as conveying
additional information about the nature of an exception.
A class object instance that is thrown is treated similarly to a function argument or operand in
areturn statement. A temporary copy of the instance may be made at the throw point, just as
temporaries are sometimes used with function argument passing. A copy constructor if any is
used to initialize the temporary, with the class's destructor used to destruct the temporary. The
temporary persists aslong as there is a handler being executed for the given exception. Asin
other parts of the C++ language, some compilers may be able in some cases to eliminate the
temporary.
An example:

#include <iostream.h>

class Exc{
char* s,
public:
Exc(char* €) { s = e; cerr << "ctor called\n";}
Exc(const Exc& e) {s=e.s, cerr << "copy ctor called\n";}
~Exc() { cerr << "dtor called\n";}
char* geterr() const { return s;}

b
void check_date(int date)
{
if (date < 1900)
throw Exc("date < 1900");
/I other processing
}
int main()
{
try {
check_date(1879);
}
catch (const Exc& €) {
cerr << "exception was. " << e.geterr() << "\n";
}
return O;
}

If you run this program, you can trace through the various stages of throwing the exception,
including the actual throw, making atemporary copy of the class instance, and the invocation
of the destructor on the temporary.

68

C++ Tutorids

It's also possible to have "throw" with no argument, asin:
catch (const Exc& e) {
cerr << "exception was: " << e.geterr() << "\n";
throw;
}
What does this mean? Such usage rethrows the exception, using the already-established
temporary. T he exception thrown is the most recently caught one not yet finished. A caught
exception is one where the parameter of the catch clause has been initialized, and for which
the catch clause has not yet been exited.
So in the example aove, "throw;" would rethrow the exception represented by "e". Because
there isno outer catch clause to catch the rethrown exception, a special library function
terminate() is called. If an exception is rethrown, and there is no exception currently being
handled, terminate() is called as well.
In the next issue we'll talk more about how exceptions are handled in a catch clause.

INTRODUCTION TO EXCEPTION HANDLING PART 3 - STACK UNWINDING

In the last issue we talked about throwing exceptions. Before discussing how exceptions are
handled, we need to talk about an intermediate step, stack unwinding.
The exception handling mechanism is dynamic in that arecord is kept of the flow of program
execution, for example via stack frames and program counter mapping tables. When an
exception isthrown, control transfers to the nearest suitable handler. "nearest” in this sense
means the nearest dynamically surrounding try block containing a handler that matches the
type of the thrown exception. We will talk more about exception handlersin afuture issue.
Transfer of control from the point at which an exception is thrown to the exception handler
implies jumping out of one program context into another. What about cleanup of the old
program context? For example, what about local class objects that have been allocated? Are
their destructors called?
The answer is "yes". All stack-allocated ("automatic") objects allocated since the try block
was entered will have their destructors invoked. Let's look at an example:

#include <iostream.h>

classA {
int x;

public:
A(inti) {x =1; cerr << "ctor " << x << endl;}
~A() { cerr << "dtor " << x << endl;}

};

void f()

{
A al(l);
throw "thisis atest";
A a2(2);

}

69

C++ Tutorids

int main()
{

try {
A a3(3);

fO;

A a4(4);
}
catch (const char* s) {

cerr << "exception: " << s<< endl;
}

return O;

}
Output of thisprogramiis:

ctor 3

ctor 1

dtor 1

dtor 3

exception: thisis atest
In this example, we enter the try block in main(), allocate a3, then call f(). f() allocates al, then
throws an exception, which will transfer control to the catch clause in main().
In this example, the al and a3 objects have their destructors called. a2 and a4 do not, because
they were never alocated.
It's possible to have class objects containing other class objects, or arrays of class objects, with
partial construction taking place followed by an exception being thrown. In this case, only the
constructed subobjects will be destructed.

INTRODUCTION TO EXCEPTION HANDING PART 4 - HANDLING AN
EXCEPTION

In previous issues we discussed throwing of exceptions and stack unwinding. Let's now look
at actua handling of an exception that has been thrown. An exception is handled viaan
exception handler. For example:
catch (T x) {
/] stuff
}

handles exceptions of type T. More precisely, ahandler of the form:
catch (T x) {
/] stuff
}

or.

catch (const T x) {
/] stuff
}

70

C++ Tutorids

or:
catch (T& x) {
/] stuff
}
or:
catch (const T& Xx) {
/1 stuff
}

will catch athrown exception of type E, given that:
- T and E are the same type, or

- T isan unambiguous public base class of E, or

- T isapointer type and E is a pointer type that can be
converted to T by a standard pointer conversion

As an example of these rules, in the following case the thrown exception will be caught:

#include <iostream.h>
classA{};

classB : public A {};
void f()

throw B();
}

int main()
{
try {
f0);
}

catch (const A& Xx) {
cout << "exception caught" << endl;
}

return O;
}

because A is apublic base class of B. Handlers are tried in order of appearance. If, for

example, you place ahandler for aderived class after ahandler for a corresponding base class,
it will never be invoked. If we had ahandler for B after A, in the example above, it would not

be called.
A handler like:
catch (...) {

/] stuff

71

C++ Tutorids

}
appearing as the last handler in a series, will match any exception type.
If no handler isfound, the search for amatching handler continues in adynamically
surrounding try block. If no handler isfound at all, a specid library function terminate() is
called, typically ending the program.
An exception is considered caught by a handler when the parameters to the handler have been
initialized, and considered finished when the handler exits.
In the next issue well talk a bit about exception specifications, that are used to specify what
exception types a function may throw.

INTRODUCTION TO EXCEPTION HANDLING PART 5- TERMINATE() AND
UNEXPECTED()

Suppose that you have a bit of exception handling usage, like this:
void f()

{
}

int main()

{

throw -37;

try {
fO;
}

catch (char* s) {

return O;

}
What will happen? An exception of type "int" isthrown, but there isno handler for it. In this
case, aspecial function terminate() is called. terminate() is called whenever the exception
handling mechanism cannot find a handler for athrown exception. terminate() isalso called in
acouple of odd cases, for example when an exception occurs in the middle of throwing
another exception.
terminate() is alibrary function which by default aborts the program. Y ou can override
terminate if you want:

#include <iostream.h>

#include <stdlib.h>

typedef void (* PFV)(void);
PFV set_terminate(PFV);
void t()

{

cerr << "terminate() called" << endl;
exit(1);

72

C++ Tutorids

}
void f()
{
throw -37,;
}
int main()
{
set_terminate(t);
try {
f0);
}
catch (char* s) {
return O;
}

Note that this areaisin a state of flux as far as compiler adaptation of new features. For

example, terminate() should really be "std::terminate()", and the declarations may be found in

aheader file "<exception>". But not al compilers have this yet, and these examples are
written using an older no-longer-standard convention.
In asimilar way, acall to the unexpected() function can be triggered by saying:
#include <iostream.h>
#include <stdlib.h>

typedef void (* PFV)(void);

PFV set_unexpected(PFV);

void u()
{
cerr << "unexpected() called" << endl;
exit(1);
}
void f() throw(char*)
{
throw -37,
}
int main()
{

set_unexpected(u);

try {

73

C++ Tutorids

f0;
}

catch (int i) {
}

return O;

unexpected() is called when afunction with an exception specification throws an exception of
atype not listed in the exception specification for the function. In this example, f()'s exception
specification is:

throw(char*)
A function declaration without such a specification may throw any type of exception, and one
with:

throw()
is not allowed to throw exceptions at al. By default unexpected() calls terminate(), but in
certain cases where the user has defined their own version of unexpected(), execution can
continue.
Thereis aso abrand-new library function:

bool uncaught_exception();
that is true from the time after completion of the evaluation of the object to be thrown until
completion of theinitiaization of the exception declaration in the matching handler. For
example, this would be true during stack unwinding (see newsletter #017). If this function
returns true, then you don't want to throw an exception, because doing so would cause
terminate() to be called.

Placement New/Delete

In C++, operators new/del ete mostly replace the use of malloc() and free() in C. For example:
classA {
public:
AQ);
~AQ);
b

A* p=new A;

delete p;
allocates storage for an A object and arranges for its constructor to be called, later followed by
invocation of the destructor and freeing of the storage. Y ou can use the standard new/delete
functionsin the library, or define your own globally and/or on a per-class basis.

74

C++ Tutorids

There's avariation on new/del ete worth mentioning. It's possible to supply additional
parametersto anew call, for example:

A* p=new (a b) A;
where aand b are arbitrary expressions; this is known as "placement new". For example,
suppose that you have an object instance of a specialized class named Alloc that you want to
pass to the new operator, so that new can control allocation according to the state of this object
(that is, aspecialized storage all ocator):

classAlloc {/* stuff */};

Alloc alocator;

class A {/* stuff */};

A* p=new (alocator) A;
If you do this, then you need to define your own new function, like this:
void* operator new(size t s, Alloc& a)

{

}
The first parameter is always of type "size t" (typically unsigned int), and any additional
parameters are then listed. In this example, the "a" instance of Alloc might be examined to
determine what strategy to use to allocate space. A similar approach can be used for operator
new[] used for arrays.
This feature has been around for awhile. A relatively new feature that goes along with it is
placement delete. If during object initialization as part of a placement new call, for example
during constructor invocation on a class object instance, an exception is thrown, then a
matching placement delete call is made, with the same arguments and values as to placement
new. In the example above, a matching function would be:

void operator delete(void* p, Alloc& a)

{

}
With new, the first parameter is aways "size t", and with delete, aways "void*". So

"matching" in thisinstance means al other parameters match. "a" would have the value as was
passed to new earlier.
Here'sasimple example:

int flag = 0;

/] stuff

/] stuff

typedef unsigned int size t;
void operator delete(void* p, inti)

{
flag =1,

75

C++ Tutorids

}
void* operator new(size ts,inti)
{
return new char[s];
}
classA {
public:
A() {throw -37;}
b
int main()
{
try {
A* p=new (1234) A;
}
catch (inti) {
}
if (flag==0)
return 1,
else
return O,

Placement delete may not be in your local C++ compiler as yet. In compilers without this

feature, memory will leak. Note also that you can't call overloaded operator delete directly via

the operator syntax; you'd have to code it as aregular function call.

Pointersto M embersand Functions

POINTERSTO MEMBERS

In ANSI C, function pointers are used like this:
#include <stdio.h>

void f(int i)
printf("%d\n", i);

}

typedef void (*fp)(int);

76

C++ Tutorids

void main()

{
fpp=&f;

(*p)(37); /* these are equivalent */

p(37);

and are employed in a variety of ways, for example to specify a comparison function to a
library function like gsort().
In C++, pointers can be similarly used, but there are a couple of quirks to consider. We will
discuss two of them in this section, and another one in the next section.
The first point to mention isthat C++ has C-style functionsin it, but also has other types of
functions, notably member functions. For example:

classA {

public:

void f(int);
1

In this example, A::f(int) isamember function. That is, it operates on object instances of class
A, and the function itself has a "this" pointer that points at the instance in question.
Because C++ isastrongly typed language, it is desirable that a pointer to a member function
be treated differently than a pointer to a C-style function, and that a pointer to a function
member of class A be distinguished from a pointer to amember of classB. To do this, we can
say:

#include <iostream.h>

classA {
public:

void f(int i) {cout << "valueis: " <<i << "\n";}
b

typedef void (A::*pmfA)(int);
pmfA x = &A::f;

void main()
{
Ag
A* p=4&sg

} (p->*X)(37);

Note the notation for actually calling the member function.
It is not possible to intermix such a type with other pointer types, so for example:
void f(int) {}

pmfA X = &f;

7

C++ Tutorids

isinvaid.
A static member function, asin:

classA {
public:

static void g(int);
b

typedef void (*fp)(int);

fpp=&A:.g;
istreated like a C-style function. A static function hasno "this" pointer and does not operate
on actual object instances.
Pointers to members are typically implemented just like C function pointers, but thereis an
issue with their implementation in cases where inheritance is used. In such a case, you have to
worry about computing offsets of subobjects, and so on, when calling amember function, and
for this purpose a runtime structure similar to avirtual table used for virtual functionsis used.
It's dso possible to have pointers to data members of a class, with the pointer representing an
offset into aclass instance. For example:

#include <iostream.h>

classA {
public:

int x;
b

typedef int A::*piA;
piA X = &A:X;

void main()

{
Ag
A* p=4&sg

ax=37:

cout << "valueis. " << p->*x << "\n";

}

Note that saying "& A::x" does not take the address of an actual data member in an instance of
A, but rather computes a generic offset that can be applied to any instance.

A NEW ANGLE ON FUNCTION POINTERS

The discussion on function pointersin this issue overlooks one key angle that has fairly
recently been introduced into the language. This involves distinguishing between C and C++
pointers. A C-style pointer in C++, that is, one that does not point to a member function, is

78

C++ Tutorids

used just like a function pointer in C. But according to the standard (section 7.5), such a
pointer in fact has a different type.
For example, consider:

extern "C" typedef void (*fp1)(int);

extern "C++" typedef void (*fp2)(int);

extern "C" void f(int);
fpl and fp2 are not the same type, and saying:
fp2 p = &f;
toinitialize p to the f(int) declared in the ‘extern "C"' will not work.
Itis possible to overload functions on this basis, so that for example:
extern "C" void f(void (*)(int));

extern "C++" void f(void (*)(int));
islegal, with the appropriate f() called based on the function pointer type passed to it. The
function pointer parameter types in this example are not identical; thefirstisa pointer toaC
function, the second a pointer to a C++ one.
This feature is new and may not be implemented in your local C++ compiler.

Type I dentification

A relatively new feature in C++ istype identification, where it is possible to determine the
type of an object at run time. A ssmple example of thisfeatureis:

#include <typeinfo.h>

#include <stdio.h>

classA {
public:

virtual void f(int) {}
h

classB : public A {
public:

virtual void f(int) {}
b

int main()
{
Ag
B b;
A* apl=&a;

79

C++ Tutorids

A* ap2 = &b;

if (typeid(*apl) == typeid(A))
printf("aplis A\n");

else
printf("aplis B\n");

if (typeid(*ap2) == typeid(A))
printf("ap2 is A\n");

else
printf("ap2 is B\n");

return O;

}
which produces:

aplisA

ap2isB
even though the nominal type of both *apl and *ap2 is A. In this example, *apl and * ap2
represent polymorphic types, that is, types that can refer to any classtypein a hierarchy of
derivations. If we omitted the virtual functionsin A and B, this program would give different
results, considering both *apl and * ap2 to be referencing A objects.
typeid() produces an object of type "typeinfo”, described in typeinfo.h (or just "typeinfo™ in
newer systems). This type has operations for testing for equality, and also a member function
for returning the name of atype. For example, when this code is executed:

#include <typeinfo.h>

#include <stdio.h>

int main()
b
inti;
double x[57];
float f1=0.0;
const float f2 = 0.0;

printf("%s\n", typeid(i).name());
printf("%s\n", typeid(x).name());

if (typeid(fl) == typeid(f2))
printf("equal\n™);

return O;
}

theresult is:
int
double [57]
equal

80

C++ Tutorids

Note that the typeid() comparison ignores top-level "const”. The form of the name returned by
name() isimplementation-dependent.

This feature of C++ is quite important, because it represents apartial departure from early
binding, that is, fully resolving names at compile time. Sometimes it's necessary to be able to
mani pul ate type names in arunning program. A more recent language like Java(tm) has many
more features of thistype.

Javaand al Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is areference to the Java Development Kit.

Dynamic Casts

In the last issue we discussed runtime type identification, a mechanism for obtaining the type
of an object during program execution. There is another aspect of this that we need to mention,
the dynamic_cast<> feature. If we have an expression:

dynamic_cast<T*>(p)
then this operator converts its operand p to the type T*, if *predlyisaT or aclassderived
from T; otherwise, the operator returns O.
What does this mean in practice? Suppose that you have a pointer or reference to a base class,
and you want to know whether you "realy" have a base class pointer, or instead a pointer to
some class object derived from the base class. In this case, you can say:

#include <typeinfo.h>

#include <iostream.h>

classA {
public:

virtua void f() { cout << "A::f\n";}
1

classB : public A {
public:

virtual void f() { cout << "B::f\n";}
b

void f(A* p)
{

81

C++ Tutorids

/lcout << (void*)(B*)p << endl;

B* bp = dynamic_cast<B*>(p);
if (bp)
bp->f();
}

int main()

{
A* ap =new A();
B* bp = new B();

f(ap);
f(bp);

return O;

}
Here we have a program that creates A and B objects, and passes pointersto themto a
function f(). f() checks whether p isreally a pointer to aB, and if so, calls B::f().
Note that we could use the technique shown in the last issueif all we want to do is check the
type. But there are advantages to combining the check and the cast. Oneis that a combined
operator makes it difficult to mismatch the test and the cast. Another advantage is that a static
cast, for example asillustrated in the commented-out line above, doesn't always give the
correct result. That is, it relies on static information and doesn't know whether a base class
pointer "really" points at aderived object instance.

Explicit Template Argument Specification

One of the newer featuresin C++ isthe ability to explicitly specify argument types for
function templates. As a simple example of this, consider the following:
template <class T> void f(inti) { T x=1i; ... }

void g()
{

}
It used to be that you'd have to use all the template parameter types (like T) in the declaration

of the template, but thisis no longer required. In this example, T is declared viathe <>
specification to be of type double, and the actual function parameter is of course an int.
One possible application for the feature is the ability to specify what atemplate's return type
should be:

template <classT, classU, class V>V max(T t, U u)

f<double>(37);

82

C++ Tutorids

{
if (t>u)
return V (t);
else
return V (u);
}
void g()
{
int i = max<double,double,int>(12.34, 43.21);
}

independent of reliance on the template function arguments.

Using Standard Libraries

INTRODUCTION TO C++ LIBRARIESPART 1 -<CASSERT> AND <CERRNO>

We are going to spend some time looking at C++ libraries, starting with a couple of library
utilities used for reporting errors. These are <cassert> and <cerrno>, and work the same in
C++ asin C. We will be using the older <assert.h> and <errno.h>, because the newer names
don't yet exist in many compilers.
assert.h defines amacro assert() used to check assertions within a program. For example:
#include <stdio.h>
#include <assert.h>

int main()
{
FILE* fp = fopen(“test.txt", "r");

assert(fp '= NULL);

return O;

}
If the argument to assert() is false (zero), the program terminates by calling the library
function abort(), and gives a diagnostic as to the file and line of the error. In this example, an
error like:

Assertion failed: fp '= NULL, filex2.c, line 8

Abnormal program termination
comes out. Note that we could shorten the test to:

assert(fp);
identical to fp '= NULL.

83

C++ Tutorids

assert() is useful for "should never happen" kinds of errors, or for quick prototyping. It's not
really suitable as a primary tool for giving end-user error messages.
Another error-reporting tool is <cerrno>. This has antecedents in the UNIX operating system,
where a system call would return -1 on failure, and set aglobal variable "errno™ to a number
giving amore precise indication of what failed.
An example of using this techniqueis:

#include <stdio.h>

#include <errno.h>

#include <iostream.h>

#include <string.h>

int main()
{

errno = 0,
FILE* fp = fopen(“test.txt", "r");

if (fp==NULL)
cout << strerror(errno) << endl;

return O;

}
errno isreset, and then an fopen() call made, which will ultimately invoke a system call open()
to open afile. If fopen() returns NULL, errno can be queried to find out what exactly went
wrong. strerror() is used to retrieve the text of the various error message codes represented by
errno.
In this example, the output is:

No such file or directory
This mechanism is useful in obtaining detail about errors, but you need to be careful to reset
errno each time. Also, errno is not thread-safe.

INTRODUCTION TO C++ LIBRARIESPART 2 - <STRING>

C++ inherits C-style strings from C, where a sequence of charactersisterminated with anull
character and referenced viaa char* pointer, and storage for dynamic strings must be
explicitly managed. For example:

#include <stdio.h>

#include <string.h>

int main()

{
char buf[25];
strepy(buf, "testing");
printf("%s\n", buf);

}

This approach works pretty well and is efficient, but is quite low-level and prone to errors.

C++ Tutorids

A newer facility is C++-style strings. A simple example, that reads from standard input and
writes each line to standard output, after reversing the characters in the line, looks like this:
#include <iostream>
#include <string>

using namespace std;

int main()
o
string instr;

while (cin >> instr) {
string outstr = "";
for (inti =instrlength() - 1;i >=0;i--)
outstr += instr[i];
cout << outstr << endl;

}

return O;

}
Note in this example that >> and << are overloaded for I/O, that [] is used to index individua
characters, that += is used to concatenate an individual character to a string, and that there's no
need to worry about memory management.
The string class is based on atemplate "basic_string" that provides string operations, and is
defined as:

typedef basic_string<char> string;
But you don't need to worry about this unless you really want to make sophisticated use of
string facilities. Note aso that string is defined in the "std" namespace, which must be
included viaausing declaration.
Strings have value semantics, meaning that a copy is done when one string is assigned to
another. So, for example, the output of this program:

#include <iostream>

#include <string>

using namespace std;

int main()

{
string s1 = "abc";
string s2 = s1;
sl = "def";

cout << 2 << endl;
return O;
}

is"abc" and not "def".

85

C++ Tutorids

Another example, illustrating some additional features of string, is one that replaces "abc" in
input lines with "ABC", and writes the result to standard outpult:

#include <iostream>

#include <string>

#include <stdio>

using namespace std;

int main()
{
string str;

while (cin >> str) {
string::size_type st = str.find("abc");
if (st!=string::npos)
str.replace(st, 3, "ABC");
printf("%s\n", str.c_str());
}

return O;

}
find() attempts to find a substring in the string, and returnsitsindex if found. "string::npos" is
aspecia value that indicates the search failed. Strings have the property:

length() < npos
If the search succeeds, we replace "abc" with "ABC". We then output the value using C-style
I/0O, asanillustration of a how a C++ string can be converted to a C one using c_str().
C++ strings offer ahigher-level abstraction than C-style ones, and are preferred in most cases.

INTRODUCTION TO C++ LIBRARIESPART 3-NUMERIC_LIMITS

We've started looking a some of the features of the C++ standard library. One of theseis
numeric_limits, atemplate defined in <limits>. numeric_limitsisused to obtain information
about the properties of integral and floating-point types on the local system.
For example, this program:

#include <iostream>

#include <limits>

using namespace std;
int main()
{
cout << numeric_limits<long>::digits << endl;

cout << numeric_limits<double>::max_exponent10 << endl;

return O;

86

C++ Tutorids

prints "31" and "308" when using Borland C++ 5.0 on aPC. 31 is the number of non-sign
digitsin along, and 308 the maximum base-10 exponent of adouble. Properties that do not
make sense for atype (such as max_exponent10 for int) are given default val ues.
The set of properties that is available will vary based on the underlying type. For example,
floating-point types have information available on exponents, infinity, and so on.
Some of the common properties are illustrated by another example:

#include <iostream>

#include <limits>

using namespace std;

int main()
cout << numeric_limits<short>::is_integer << endl;
cout << numeric_limits<short>::min() << endl;
cout << numeric_limits<short>::max() << endl;

return O;

}
which checks whether the type (short) is an integral type, and obtains the minimum (-32768)
and maximum (32767) vaues for the type.
If you define your own custom numeric type, it'sa good ideato specialize numeric_limits for
that type. For example, suppose that | have atype “LongLong" that is twice the length of a
long. | might say something like:

#include <iostream>

#include <limits>

using namespace std;
classLongLong {/* ... */};

class numeric_limits<LongLong> {
public:

inline static LongLong min() throw() {/* ... */}
inline static LongLong max() throw() {/* ... */}

b

int main()

{ cout << numeric_limits<LongLong>::min() << endl;
cout << numeric_limits<LongLong>::max() << endl;
return O;

}

and define the appropriate members suitable for this numeric type.

87

C++ Tutorids

INTRODUCTION TO C++ LIBRARIESPART 4 - NO-THROW OPERATOR NEW()

In previous issues we've occasionally mentioned that older versions of operator new() would
return O if they failed, similar to what the C library function malloc() does. More recently,
operator new() was specified as throwing an exception if memory could not be allocated.
In the C++ standard that was just finalized, both approaches are in fact supported. The
standard operator new() throws a "bad_alloc" exception. But there's also a no-exception
version, defined like thisin <new>:

classbad alloc : public exception{...};

struct nothrow_t {};
extern const nothrow_t nothrow;

void* operator new(size t) throw(bad_alloc);
void* operator new(size t, const nothrow_t&) throw();

This says that two basic flavors of new() are supported (there are also other ones such as new(]
for use with arrays). The first throws abad_alloc exception if it can't allocate memory, while
the second simply returns 0. The second flavor would be used like this:

int* ip = new (nothrow) int[10000]; // never throws an exception

if (p==0)

/[alocation error

In other words, it's a syntactic variant of placement new() as described in issue #019.
This approach allows for error-handling strategies that do not use exceptions. Whether such
strategies are "good" depends alot on the particular application in question.

INTRODUCTION TO C++ LIBRARIESPART 5 - PROGRAM INVOCATION AND
TERMINATION

In previous issues we've acknowledged that there are avariety of waysin which existing C++

compilers treat issues like the declaration of main(), program termination, and so on. It is

worth revisiting this topic, given the new standard for the language.

A C++ program starts by initializing objects with static storage duration, using zero/constant

initialization (asin C, and known as "static initialization"), and then performing dynamic

initialization (constructors and non-constant expression initialization) for objects in the order

that the objects appear in atrandation unit (order between translation units is undefined).

The function main() is then called. main() isagloba function that must be declared as one of:
int main()

int main(int argc, char* argv[]) /[argc >= 0, argv[argc] ==
main() cannot be predefined (such asin alibrary), overloaded, called within aprogram,
inlined, or made static. The linkage of main() (for example C or C++ linkage) is
implementation defined.
A "return X;" statement in main() results in the destruction of automatic objects, and works as
if "exit(X)" was called. If execution falls off the end of main(), it will be treated as though a
"return 0;" was the last statement.

88

C++ Tutorids

The function abort() terminates a C++ program, without executing destructors for objects with
automatic or static storage duration, and without calling functions registered with atexit().
atexit() is used to register functions that are to be called when the program terminates.

The effect of exit() isto call the destructors for all static objects, in the reverse order of their
construction (automatic objects are not destructed). This last-in-first-out process dso
incorporates functions registered with atexit(), such that a function registered with atexit()
after a static object is constructed, will be called before that static object is destructed.

After this process is complete, all open C streams are flushed and closed, files created with
tmpfile() are removed, and an exit status is passed back to the calling system.

Some aspects of dl the above are alittle tricky, but it'simportant to understand the complete
process of invocation and termination. Sometimes there are important parts of an application
(such as stream 1/O) that depend on the underlying mechanics of program startup and
shutdown.

INTRODUCTION TO C++ STANDARD LIBRARIESPART 6 - STANDARD
EXCEPTIONS

With the standardization of C++, thereis a set of standard exceptions that have been
identified. These are thrown in response to varioustypes of error conditions, both in the
standard library and in user programs.
The organization of these is:

exception

bad_alloc (out of memory)

bad_exception (called for unexpected exceptions)
bad_cast (bad operand to dynamic_cast<>)

bad typeid (bad operand to typeid())
ios_base::failure (1/0 output)

logic_error
length_error (invalid length)
domain_error (domain error)
out_of range (argument out of range)
invalid_argument (invalid argument)

runtime_error
range_error (out of range in internal computation)
overflow_error (overflow error)
underflow_error (underflow error)
arranged in acorresponding class hierarchy.
An example of using these exceptions would be the following program:
#include <iostream>
#include <stdexcept>

using namespace std;

void f(int x, inty)

89

C++ Tutorids

{
if (x<0)
throw invalid_argument("x < 0");
if (y<0)
throw invalid_argument('y < 0");
}
int main()
{
try {
(37, -59);
}::atch (exception e) {
cout << e.what() << endl;
}
return O;
}

The thrown exception is caught in main(). If it had not been, the program would terminate.
Y ou can of course create your own exception classes, derived or not from "exception”. But it's
worth knowing about and using standard exceptions wherever possible.

INTRODUCTION TO C++ STANDARD LIBRARIESPART 7 - PAIR

The C++ standard library contains much support for containers and algorithms, 1/0O, locale
support, and so on. One of the library classes (actually atemplate) that sort of falls between
the cracksis pair<T1,T2>, defined in <utility>.
Pair is used to construct objects, which contain apair of values of two arbitrary types T1 and
T2. Pair isdefined as:
template <class T1, class T2> struct std::pair {
T1 first;
T2 second;
pair(const T1& X, const T2&) : first(x), second(y) { }
/I omits a couple of other constructors
b
A related function std::make_pair() is also provided to create pairs.

Thisisavery simple idea, but aquite useful one. For example, consider the problem of
returning two values from a function, such as the minimum and maximum of a set of values:
#include <algorithm>
#include <utility>
#include <iostream>

using namespace std;

template <class T> pair<T,T> minmax(T* vec, int n)

{

90

C++ Tutorids

return pair<T,T>(*min_element(vec, vec + n),
*max_element(vec, vec + n));

}

int main()

{ int vec[] ={1, 19, 2, 14, -5, 59, 67, -37, 100, 47} ;
pair<int,int> p = minmax(vec, 10);
cout << p.first<<" " << p.second << endl;
return O;

}

minmax() takes a T* vector argument and a vector size, and returns the minimum and
maximum values of the vector, using the library functions min_element() and max_element().
The values are passed back in apair<T,T> structure.

Pair isused in the standard library, for example to represent the (key,value) pair within the
map container.

INTRODUCTION TO C++ STANDARD LIBRARIESPART 7-COMPLEX

A class for doing complex arithmetic is often presented as an illustration of how to design a
user-defined type, and various versions of such aclass exist today in actual C++
implementations.
The recently-standardized C++ library includes a complex type, as atemplate rather than
simply aclass. Basing complex on atemplate alows for specification of the underlying scalar
type, with specializations provided for float, double, and long double. So three complex class
types are guaranteed to be defined:

std::complex<float>

std::complex<double>

std::complex<long double>
All the usual operations on complex types are provided by this template. For example, a
simple program that multiplies two complex numbersis:

#include <complex>

#include <iostream>

using namespace std;
typedef complex<double> ComplexDouble;
int main()

{
ComplexDouble a(1.0, 2.0);

ComplexDouble b(3.0, 5.0);

91

C++ Tutorids

cout << a* b<<endl;

return O;
}
which takes the product of (1.0,2.0) and (3.0,5.0), yielding (-7.0,11.0).
Complex does not do any special error checking for domain or range errors, beyond that
provided by underlying operations such as sgrt().

Operators new[] and delete]]

The C++ library haslong had operator new() and delete() for dynamic storage allocation. Note
that with these there's a distinction made between the operators specified as keywords, asin:
new A[10];
and the functions, for example:
operator new(159);
The former usage not only is responsible for alocating space, via operator new(), but also for
arranging for constructors to be called for the individual objectsin the array ots. So normally
you will not use operator new() directly.
More recently the functions operator new[]() and operator deletef]() have been added to the
language. These are like operator new() and operator delete(), but are invoked when arrays are
being allocated and deallocated.
To see how this works, consider an example such as:
#include <stddef.h>
#include <stdio.h>

classA {
int x;

public:
AQ {printf("A::A %Ix\n", (unsigned long)this);}
~A() { printf("A::~A %Ix\n", (unsigned long)this);}

H
void* operator new[](size t sz)
{ printf("allocated size = %lu\n”, (unsigned long)sz);
void* vp = operator new(sz);
printf("allocated pointer = %lx\n", (unsigned long)vp);
\ return vp;

92

C++ Tutorids

void operator delete[](void* ptr)

{
printf("returned pointer = %Ix\n", (unsigned long)ptr);
operator delete(ptr);
}
int main()
{
A* ap = new A[10];
delete [] ap;
return O;
}

This example redefines operator new[]() and operator delete[](), and they are invoked when
the program is executed.
When operator new[]() is called, it is passed an argument indicating how many bytes are
required for the total array. In this example, approximately 40 bytes are needed for the 10
array slots (thiswill vary from system to system, with overhead for each chunk of space
alocated).
In the example above, the actual bytes are allocated via a call to operator new(), that is, the
non-array version is called to allocate the bytes. operator delete[]() worksin a similar way.
Note that the C++ standard specifies that the size of the array is saved, so that when it is
deleted, the system will know how many slots to iterate across to call the destructors for
individual objects.
Typical output of the programis:
allocated size = 44
allocated pointer = 7b2514
::A 7b2518
::A 7b251c
::A 7b2520
A 7b2524
A 7b2528
::A 7b252c
::A 7b2530
::A 7b2534
::A 7b2538
::A 7b253c
::~A 7b253c
::~A 7b2538
:~A 7b2534
::~A 7b2530
::~A 7b252c
::~A 7b2528
:~A 7b2524
:~A 7b2520
::~A 7b251c

>r>r>>r2r>>>>>>>>>>>>>r

93

C++ Tutorids

A:~A 7b2518

returned pointer = 7b2514
Note that objects are constructed and then destructed in LIFO (last-in first-out) order. Also,
note that we used C-style 1/O instead of stream I/O to print out information. Why is this? If
stream 1/O is used here, the program will crash with a popular compiler, probably because at
the first call to operator new[](), the 1/O system is not initialized as yet (the call to new in this
case is presumably to obtain a buffer to initialize the system). So you need to be very careful
in overloading the global versions of new and delete.
It's d so possible to define operator new[]() and operator delete[]() on a per-class basis.
Considering this feature and the one described in the next section, there are six varieties each
of new and delete:

regular + throws exception

regular + doesn't throw exception
array + throws exception

array + doesn't throw exception
placement + doesn't throw exception

placement + array + doesn't throw exception

C++ Character Sets
With the recent standardization of C++, it's useful to review some of the mechanisms included

in the language for dealing with character sets. This might seem like avery simple issue, but
there are some complexities to contend with.
Thefirst ideato consider is the notion of a "basic source character set" in C++. Thisis defined
to be:

al ASCII printing characters 041 - 0177, savefor @ $° DEL

space

horizontal tab

vertical tab

form feed

newline

C++ Tutorids

or 96 charactersin all. These are the characters used to compose a C++ source program.
Some national character sets, such as the European 1SO-646 one, use some of these character
positions for other letters. The ASCII characters so affected are:

[I{FIN
To get around this problem, C++ defines trigraph sequences that can be used to represent these
characters:

[X
1 7
{ <
} >
| 7
\
4 7=
Ao
-~

Trigraph sequences are mapped to the corresponding basic source character early in the
compilation process.

C++ dso has the notion of "alternative tokens', that can be used to replace tokens with others.
The list of tokens and their alternativesisthis:

{ <%

b %>

[<

] >

%
#H %%
&& and
| bitor

| or
Aoxor

95

C++ Tutorids

~ compl

& bitand
&= and &g
= or_eq
A= Xor_eq

! not

I= not_eq
Another ideais the "basic execution character set". Thisincludes al of the basic source
character set, plus control characters for aert, backspace, carriage return, and null. The
"execution character set" is the basic execution character set plus additional implementation-
defined characters. The ideaisthat a source character set is used to define a C++ program
itself, while an execution character set is used when a C++ application is executing.
Given this notion, it's possible to manipulate additional characters in arunning program, for
example characters from Cyrillic or Greek. Character constants can be expressed using any of:
\137 octal

\xabcd hexadecimal
\u12345678 universal character name (ISO/IEC 10646)

\ul234 ->\u00001234
This notation uses the source character set to define execution set characters. Universal
character names can be used in identifiers (if letters) and in character literals:

\ul234'

L'\u2345'

The above features may not yet exist in your local C++ compiler. They are important to
consider when developing internationalized applications.

Allocators

In previous issues, we've looked at some of the standard containers (such as vector) found in
the C++ Standard Library. One of the interesting issues that comes up is how such containers
manage memory. It turns out that containers use what is called a standard allocator, defined in
<memory>.

To see abit of how this works, we will devise acustom allocator:

96

C++ Tutorids

#include <vector>
#include <cstddef>
#include <iostream>

using namespace std;

template <class T> class alloc {
public:
typedef T value_type;
typedef size t size type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;

void construct(pointer p, const_reference val)

new (p) T(va);
}
void destroy(pointer p)
{
p->~T();
}
pointer allocate(size type sz, void* vp = 0)
{
pointer p = static_cast<pointer>(operator new(sz *
sizeof(value_type)));
cout << "dlocate " << (unsigned long)p << endl;
return p;
}
void deallocate(pointer p, size_type)
{
cout << "deallocate " << (unsigned long)p << end!;
operator delete(p);
}

|3
This alocator overrides the default allocator for vector, and is specified by saying:

vector<int, dloc<int>>v;
The allocator templ ate establishes a series of standard internal types such as "pointer”. The
real work gets done in allocate() and deallocate(), which are used to allocate N objects of type

97

C++ Tutorids

T. The standard all ocator uses operator new() and operator delete() to actually
allocate/deallocate memory.

Normally you don't need to worry too much about this area, but sometimes for reasons of
speed and space you may wish to construct your own allocator for use with standard
containers. For example, allocators can be written that are efficient for very small objects, or
that use shared memory, or that use memory from pre-allocated pools of objects.

C++ asaBetter C

Function Prototypes

References

Operator New/Delete

Declaration Statements

Function Overloading

Operator Overloading

Inline Functions

Type Names
External Linkage

General Initializers

Jumping Past Initialization

Function Parameter Names

Character Types and Arrays

Function-style Casts

Bit Field Types

Anonymous Unions

Empty Classes
Hiding Names

98

C++ Tutorids

Function Prototypes

People often ask about how to get started with C++ or move a project or development team to
the language. There are many answers to this question. One of the simplest and best isto begin
using C++ asa"better C". This term doesn't have a precise meaning but can be illustrated via
a series of examples. We will cover some of these examples in forthcoming issues of the
newsletter.
One simple but important area of difference between C and C++ deals with the area of
function definition and invocation. In older versions of C ("Classic C"), functions would be
defined in this way:

f(s)

char* s;

{

return O;

The return type of this function isimplicitly "int", and the function has no prototype. In ANSI
C and in C++, asimilar definition would be:
int f(char* s)

{
return O;

Why does this matter? Well, suppose that you call the function with thisinvocation:
f(s)

char* s

{
}

90
{

return O;

f(23);

In Classic C, this would be a serious programming error, because a vaue of integer type (23)
is being passed to afunction expecting a character pointer. However, the error would not be
flagged by the compiler, and the result would be a runtime failure such as a crash. By contrast,
in ANSI C and in C++ the compiler would flag such usage.

Very occasionaly, you want to cheat, and actually pass avaue like
23 as a character pointer. To do this, you can say:

f((char*)23);

99

C++ Tutorids

Such usageistypically only seen in very low level systems programming.

Using function prototypes in C++ is abig step forward from Classic C; this approach will
eliminate alarge class of errors in which the wrong number or types of arguments are passed
to afunction.

Refer ences

In the last newdl etter we discussed using function prototypesin C++ to eliminate acommon
type of error encountered in C, that of calling afunction with the wrong number or types of
arguments. Another C++ feature that can be used to reduce programming errorsis known as
references.

A reference is another name for an object. For example, in this code:
inti;
int& ir=1i;
ir is another name for i. To see how references are useful, and also how they're implemented,

consider writing a function that has two return values to pass back. In ANSI C, we might say:
void f(int a, int b, int* sum, int* prod)

{
*sum=a+ b;
prod =a b;
}
void g()
{
ints,
int p;
f(37,47,&s, &p);
}

In C++, we would say:
void f(int a, int b, int& sum, int& prod)

{ sum=a+Db;
prod=a* b;
}
void g()
b
ints,

100

C++ Tutorids

int p;

(37,47, s, p);
}
One way of viewing references is to consider that they have some similarities to C pointers,
but with one level of pointer removed. Pointers are a frequent source of errorsin C.
A reference must be initialized, and its value (the pointed at object) cannot be changed after
initialization. The value of the reference cannot change, but the value of the referenced object
can, unlessthe reference is declared as const. So, for example:

inti =0;
int& ir=1i;
ir=-19; /l'i getsthevaue-19

is acceptable, while:

const int& irc = 47,

irc=-37; /I error
isnot. A constant reference that points at avalue like 47 can be implemented using a
temporary.
References are useful in argument passing and return. Another useisillustrated below in the
section on writing robust code.

Operator New/Delete

In the first newsletter we talked about using C++ as a better C. Thisterm doesn't have a
precise meaning, but one way of looking at it is to focus on the features C++ addsto C,
exclusive of the most obvious one, namely the class concept used in object-oriented
programming.
One of these features is operator new and operator delete. These are intended to replace
malloc() and free() in the C standard library. To give an example of how these are similar and
how they differ, suppose that we want to allocate a 100-long vector of integers for some
purpose. In C, we would say:

int* ip;

ip = (int*)malloc(sizeof(int) * 100);

free((void*)ip);
With new/delete in C++, we would have:
int* ip;

ip = new int[100];

101

C++ Tutorids

deleteip;
The most obvious difference is that the C++ approach takes care of the low-level details
necessary to determine how many bytes to allocate. With the C++ new operator, you smply
describe the type of the desired storage, in this example "int[100]".
The C and C++ approaches have severd similarities:

- neither malloc() nor new initialize the space to zeros

- both malloc() and new return a pointer that is suitably
aligned for agiven machine architecture

- both free() and delete do nothing with aNULL pointer
malloc() returns NULL if the space cannot be obtained. Many versions of new in existing C++
compilers do likewise. However, the draft ANSI C++ standard says that afailure to obtain
storage should result in an exception being thrown or should result in the currently installed
new handler being invoked. In these newsletters we are assuming that NULL is returned.
The idea of anew handler can be illustrated as follows:

extern "C" int printf(const char*, ...);

extern "C" void exit(int);

typedef void (*new_handler)(void);

new_handler set_new_handler(new_handler);

void f()
{
printf("new handler invoked due to new failure\n®);
exit(1);
}
main()
{
float* p;
set_new_handler(f);
for (;;)
p = new float[5000]; // something that will
/l fail eventually
return O;
}

A new handler is away of establishing ahook from the C++ standard library to a user
program. set_new_handler() is alibrary function that records a pointer to another function that
isto be caled in the event of anew failure.
Itis possible to define your own new and del ete functions. For example:

void* operator new(size t s)

102

C++ Tutorids

// dllocate and align storage of size s
I/l handle failure vianew_handler or exception

/I return pointer to storage

}

void operator delete(void* p)

{ // handle case where pisNULL

} I/ handle deallocation of p block in some way

size tisatypedef, typically defined to mean "unsigned int". It's found in a header file that
may vary between compiler implementations.

(clarification of above)
In the previous issue of the newd etter, there was an example:
int* ip;

ip = new int[100];

deleteip;
This code will work with many compilers, but it should instead read:
int* ip;

ip = new int[100];

delete[] ip;
Thisis an area of C++ that has changed several timesin recent years. There are a number of
issues to note. The first isthat new and delete in C++ have more than one function. The new
operator alocates storage, just like malloc() in C, but it is also responsible for calling the
constructor for any class object that is being allocated. For example, if we have a String class,
saying:

String* p = new String("xxx");
will allocate space for a String object, and then call the constructor to initialize the String
object to the value "xxx". In asimilar way, the delete operator arranges for the destructor to be
called for an object, and then the space is deallocated in amanner similar to the C function
free().
If we have an array of class objects, asin:

String* p = new String[100];
then a constructor must be called for each array sot, since each is a class object. Typically this
processing ishandled by a C++ internal library function that iterates over the array.
In asimilar way, deallocation of an array of class objects can be done by saying:

delete[] p;
It used to be that you had to say:

103

C++ Tutorids

delete [100] p;
but this feature is obsolete. The size of the array is recovered by the library function that
implements the delete operator for arrays. The pointer/size pair can be stored in an auxiliary
data structure or the size can be stored in the allocated block before the first actual byte of
data.
What makes this abit tricky is that all of this work of calling constructors and destructors
doesn't matter for fundamental datatypeslike int:

int* ip;

ip = new int[100];

deleteip;
This code will work in many cases, because there are no destructors to call, and deleting a
block of storage works pretty much the same whether it's treated as an array of intsor asingle
large chunk of bytes.
But more recently, the ANSI standardization committee has decided to break out the new and
delete operators for arrays as separate functions, so that a program can control the allocation of
arrays separately from other types. For example, you can say:

void* operator new(unsigned int) {/* ... */ return O;}

void* operator new[](unsigned int) {/* ... */ return O;}

void f()
{
int* ip;
ip = new int; /1 calls operator new()

ip=new int[100]; // calls operator new[]()
}

and the appropriate functions will be called in each case. Thisiskind of like defining your
own versions of the malloc() and free() library functionsin C.

Declar ation Statements

In C, when you write afunction, all the declarations of local variables must appear at the top
of the function or at the beginning of ablock:

void f()

L
int x;
I*..*l
while (x) {

inty;

104

C++ Tutorids

[* %
}
}
Each such variable has a lifetime that corresponds to the lifetime of the block it's declared in.
So in this example, x is accessible throughout the whole function, and y is accessible inside
the while loop.

In C++, declarations of this type are not required to appear only at the top of the function or
block. They can gppear wherever C++ statements are allowed:

classA {

public:
A(double);

H

void f()

{ .
int X;
f* ...*
while (x) {

..

}
inty;
y=X+5;
f* ... *
A a0bj(12.34);

and so on. Such aconstruction is called a"declaration statement”. The lifetime of avariable
declared in thisway is from the point of declaration to the end of the block.

A special case isused with for statements:

for (inti =1;i<=10; i++)

/* i no longer available */
In this example the scope of i isthe for statement. The rule about the scope of such variables
has changed fairly recently as part of the ANSI standardization process, so your compiler may
have different behavior.
Why are declaration statements useful ? One benefit is that introducing variables with shorter
lifetimes tends to reduce errors. Y ou've probably encountered very large functionsin C or C++
where a single variable declared at the top of the function is used and reused over and over for
different purposes. With the C++ feature described here, you can introduce variables only
when they're needed.

105

C++ Tutorids

Function Overloading

Suppose that you are writing some software to manipul ate calendar dates, and you wish to
allow auser of the software to specify dates in one of two forms:
8, 4, 1964 (as atriple of numbers)

August 4, 1964 (as a string)
In C, if thereis afunction to convert araw date into an internal form (for example, the number
of days since January 1, 1800), it might look like:

long str_to_date(intm, intd, inty){ ...}

long str_to_date(char* d){ ...}
with one function for each of the two types of dates. Unfortunately, this usageisillegal in C,
because two different functions cannot have the same name "str_to_date".
In C++ thisusageis legd and goes by the term "function overloading". That is, two or more
functions may have the same name, so long as the parameter types are sufficiently different
enough to distinguish which function is intended. A function may not be overloaded on the
basis of its return type.
The question of what makes two function parameter lists sufficiently different is an interesting
one. For example, thisusage isnot valid:

void f(int) {}

void f(const int) {}
whereas saying:
void f(int) {}

void f(long) {}
isfine.
A common place where function overloading is seen isin constructors for aclass. For
example, we might have:

class Date {

public:
Date(int m, int d, int y);
Date(char*);
h
to represent a calendar date. Two constructors, representing the two ways of creating adate
object (from atriple of numbers and from astring) are specified.

What can go wrong with function overloading? Consider an example of a
String class:

class String {
public:

String();
String(char*);

106

C++ Tutorids

String(char);

Here we have three constructors, the first to create a null String and the second to create a
String from achar*. The third constructor creates a String from an individual character, so that
for example 'X' turnsinto a String "x".
What happens if you declare a String object like this:

String s(37);
Clearly, the first String constructor won't be called, because it takes no arguments. And 37
isn't avalid char*, so the second constructor won't be used. That leaves String(char), but 37 is
an int and not a char. The third constructor will indeed be called, after 37 is demoted from an
int to achar.
In this case, the user "got away" with doing things this way, though it's not clear what was
intended. Usage like:

String s(12345);
is even more problematic, because 12345 cannot be converted to a char in any meaningful
way.
The process of determining which function should be called is known as "argument
matching"”, and it's one of the most difficult aspects of C++ to understand. Function
overloading is powerful, but it's smart to use it in away that makes clear which function will
be called when.

Operator Overloading

Suppose that you are using an enumeration and you wish to output its val ue:
enum E {e=37};

cout << g;
37 will indeed be output, by virtue of the enumerator value being promoted to an int and then
output using the operator<<(int) function found in iostream.h.
But what if you're interested in actually seeing the enumerator values in symbolic form? One
approach to this would be as fol lows:

#include <iostream.h>

enum E {el =27, e2 =37, e3=47};

ostream& operator<<(ostreamé& os, E €)
{
char* s,
switch (e) {
caseel:
s="el";
break;

107

C++ Tutorids

case 2.
s="e2";
break;

case €3:
s="e3",;
break;

default:
s="badvaue";
break;

}

return oS <<s;

}

main()

{

enum E x;
X =€e3;

cout << x <<"\n";
cout << el <<"\n";
cout << e2 << "\n";
cout << e3 << "\n";
cout << E(0) << "\n";

return O;
}

In the last output statement, we created an invalid enumerator value and then output it.
Operator overloading in C++ is very powerful but can be abused. It's quite possible to create a
system of operators such that it is difficult to know what is going on with a particular piece of
code.

Some uses of overloaded operators, such as[] for array indexing with subscript checking, ->
for smart pointers, or + - * / for doing arithmetic on complex numbers, can make sense, while
other uses may not.

Inline Functions

Suppose that you wish to write a function in C to compute the maximum of two numbers. One
way would be to say:
int max(int a, int b)

{

return (a>b ?a: b);

108

C++ Tutorids

But calling a frequently-used function can be a bit Slow, and so you instead use a macro:
#define max(a, b) ((@) > (b) ?(a) : (b))
The extra parentheses are required to handle cases like:
max(a=b, c=d)
This approach can work pretty well. But it is error-prone due to the extra parentheses and al so
because of side effects like:
max (at++, b++)
An dlternative in C++ isto use inline functions:
inline int max(int a, int b)

{
}

Such afunction iswritten just like aregular C or C++ function. But it IS afunction and not
simply amacro; macros don't really obey the rules of C++ and therefore can introduce
problems. Note also that one could use C++ templates to write this function, with the
argument types generalized to any numerical type.

If aninline function is a member function of a C++ class, there are a couple of ways to write
it:

return (a>b ?a: b);

classA {
public:

void f() { /* stuff */} // "inline" not needed
1

or:
classA {
public:
inline void f();
b

inline void A::f()

[* stuff */
}
The second style is often a bit clearer.
The "inline" keyword is merely a hint to the compiler or development environment. Not every
function can be inlined. Some typical reasons why inlining is sometimes not done include:
- the function callsitself, that is, isrecursive

- the function contains loops such as for(;;) or while()

- the function sizeistoo large
Most of the advantage of inline functions comes from avoiding the overhead of calling an
actual function. Such overhead includes saving registers, setting up stack frames, and so on.
But with large functions the overhead becomes less important.
Inline functions present a problem for debuggers and profilers, because the function is
expanded at the point of call and losesitsidentity. A compiler will typically have some option
available to disable inlining.

109

C++ Tutorids

Inlining tends to blow up the size of code, because the function is expanded at each point of
call. The one exception to this rule would be avery small inline function, such as one used to
access a private data member:
classA {
int x;
public:
int getx() { return x;}

which islikely to be both faster and smaller than its non-inline counterpart.
A simple rule of thumb when doing development is not to use inline functions initially. After
development is mostly complete, you can profile the program to see where the bottlenecks are
and then change functionsto inlines as appropriate.
Here's acomplete program that uses inline functions as part of an implementation of bit maps.
Bit maps are useful in storing true/false values efficiently. Note that in a couple of places we
could use the new bool fundamental type in place of ints. Also note that this implementation
assumes that chars are 8 bits in width; there's no fundamental reason they have to be (in
Java(tm) the Unicode character set is used and chars are 16 bits).
This example runs about 50% faster with inlines enabled.

#include <assert.h>

#include <stdlib.h>

#include <string.h>

[I#defineinline

class Bitmap {
typedef unsigned long UL; // type of specified bit num
UL len; I/l number of bits
unsigned char* p; /I pointer to the bits
UL size(); [figure out bitmap size
public:
Bitmap(UL); I/ constructor
~Bitmap(); /I destructor
void set(UL); /I set abit
void clear(UL); /I clear abit
int test(UL); /I test abit
void clearal(); I clear dl bits
1

/I figure out bitmap size
inline Bitmap::UL Bitmap::size()
{

}

/I constructor
inline Bitmap::Bitmap(UL n)
{

return (len-1)/8 + 1,

110

C++ Tutorids

assert(n > 0);
len=n;
p = new unsigned char[size()];
assert(p);
clearal();
}
/! destructor
inline Bitmap::~Bitmap()
{
delete[] p;
}
/l set abit
inline void Bitmap::set(UL bn)
{
assert(bn < len);
p[bn/ 8] | (1 << (bn % 8));
/I clear abit
inline void Bitmap::clear(UL bn)
{
assert(bn < len);
p[bn/ 8] &= ~(1 << (bn % 8));
}

[/l test a bit, return non-zero if set
inline int Bitmap::test(UL bn)

{
assert(bn < len);
return p[bn/ 8] & (1 << (bn % 8));
}
/I clear al bits
inline void Bitmap::clearall()
{
memset(p, 0, size());
}
#ifdef DRIVER
main()
{
const unsigned long N = 123456L ;
inti,
long j;
int k;

111

C++ Tutorids

intr;

for (i=1;i<=10;i++) {

Bitmap bm(N);
/I set all bits then test

for =0;] <N;j++)
bm.set());

for j =0;j <N;j++)
assert(bm.test()));

/I clear al bits then test

for j =0;j <N;j++)
bm.clear());

for j =0;j <N;j++)
assert('bm.test(j));

Il run clearall() then test

bm.clearal();

for j =0;j <N;j++)
assert('bm.test(j));

/I set and clear random bits

k = 1000;
while (k-- > 0) {
r =rand() & Oxffff;
bm.set(r);
assert(bm.test(r));
bm.clear(r);
assert('bm.test(r));
}
}
return O;
}
#endif

112

C++ Tutorids

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is a reference to the Java Devel opment Kit.

Type Names

In C, acommon style of usage isto say:
struct A {
int x;
b

typedef struct A A;
after which A can be used as a type name to declare objects:
void f()

{
}

In C++, classes, structs, unions, and enum names are automatically type names, so you can
say:
struct A {

int x;
1

void f()
{

}

or:
enum E {ee};

Ag

Ag

void f()

{
E e

By using the typedef trick you can follow astyle of programming in C somewnhat like that
used in C++.
But thereisaquirk or two when using C++. Consider usage like:
struct A {
int x;
b

intA;

113

C++ Tutorids

void f()

{
Ag

Thisisillegal because theint declaration A hides the struct declaration. The struct A can still
be used, however, by specifying it viaan "elaborated type specifier":

struct A
The same applies to other type names:

classA g

union U u;

enum E g
Taking advantage of this feature, that is, giving aclass type and a variable or function the
same name, isn't very good usage. It's supported for compatibility reasons with old C code; C
puts structure tags (names) into a separate namespace, but C++ does not. Terms like "struct
compatibility hack™ and "1.5 namespace rule" are sometimes used to describe this feature.

External Linkage

One of the common issues that always comes up with programming languages is how to mix
code written in one language with code written in another.
For example, suppose that you're writing C++ code and wish to call C functions. A common
case of thiswould be to access C functions that manipulate C-style strings, for example
strcmp() or strlen(). So as afirst try, we might say:
extern size _t strlen(const char*);
and then use the function. Thiswill work, at least at compile time, but will probably give a
link error about an unresolved symbol.
The reason for the link error isthat atypical C++ compiler will modify the name of a function
or object ("mangle" it), for example to include information about the types of the arguments.
As an example, acommon scheme for mangling the function name strlen(const char*) would
resultin:
strlen_ FPCc
There are two purposes for this mangling. Oneis to support function overloading. For
exampl e, the following two functions cannot both be called "f" in the object file symbol table:
int f(int);

int f(double);
But suppose that overloading was not an issue, and in one compilation unit we have:

extern void f(double);
and we use this function, and its name in the object file isjust "f". And suppose that in another
compilation unit the definition is found, as:

114

C++ Tutorids

void f(char*) {}
Thiswill silently do the wrong thing -- adouble will be passed to afunction requiring a char*.
Mangling the names of functions eliminates this problem, because alinker error will instead
be triggered. This technique goes by the name "type safe linkage".
So to be ableto call C functions, we need to disable name mangling. The way of doing thisis
to say:
extern "C" size_t strlen(const char*);
or:
extern "C" {
size t strlen(const char*);
int strcmp(const char*, const char*);
}
Thisusage is commonly seen in header files that are used both by C and C++ programs. The
extern "C" declarations are conditional based on whether C++ is being compiled instead of C.
Because name mangling is disabled with a declaration of thistype, usage like:

extern "C" {

int f(int);

int f(double);
}

isillegal (because both functions would have the name "f").

Note that extern "C" declarations do not specify the details of what must be done to allow C++
and C code to be mixed. Name mangling is commonly part of the problem to be solved, but
only part.

There are other issues with mixing languages that are beyond the scope of this presentation.
The whole area of calling conventions, such as the order of argument passing, is atricky one.
For example, if every C++ compiler used the same mangling scheme for names, thiswould
not necessarily result in object code that could be mixed and matched.

General Initializers

In C, usage like:
int f() { return 37;}

inti=47;

intj;
for global variablesislegal. Typically, in an object file and an executable program these types
of declarations might be lumped into sections with names like "text", "data", and "bss",
meaning "program code", "datawith an initiaizer", and "datawith no initializer".
When a program is loaded by the operating system for execution, acommon scheme will have
the text and data stored within the binary file on disk that represents the program, and the bss

115

C++ Tutorids

section simply stored as an entry in a symbol table and created and zeroed dynamically when
the program is loaded.
There are variations on this scheme, such as shared libraries, that are not our concern here.
Rather, we want to discuss the workings of an extension that C++ makesto this scheme,
namely general initializers for globals. For example, | can say:

int f() { return 37;}

inti=47;

intj=f() +1i;
In some simple cases a clever compiler can compute the value that should go into j, but in
general such values are not computable at compile time. Note also that sequences like:
classA {
public:
A();
~A();
};

Ag
are legal, with the global "a"' object constructed before the program "really" starts, and
destructed "after” the program terminates.
Since values cannot be computed at compile time, they must be computed at run time. How is
this done? One way isto generate adummy function per object file:

int f() { return 37;}

inti=47,

intj; /=10 +i;

static void __startup()
P=f0+i;

}

and asimilar function for shutdown as would be needed for calling destructors. Using a small
tool that will modify binaries, and an auxiliary data structure generated by the compiler, it's
possibleto link all these _startup() function instances together in alinked list, that can be
traversed when the program starts.

Typically thisis done by immediately generating a call from within main() to a C++ library
function _main() that iterates over all the __startup() functions. On program exit, similar
magic takes place, typically tied to exit() function processing. This approach is used in some
compilers but is not required; the standard mandates "what" rather than "how".

Some aspects of this processing have precedent in C. For example, when a program starts,
standard 1/O streams stdin, stdout, and stderr are established for doing I/0.

Within a given translation unit (source file), objects are initialized in the order of occurrence,
and destructed in reverse order (last in first out). No ordering isimposed between files.

Some ambitious standards proposals have been made with regard to initialization ordering, but
none have caught on. The draft standard says simply that all static objects in atrandation unit

116

C++ Tutorids

(objects that persist for the life of the program) are zeroed, then constant initializers are
applied (asin C), then dynamic general initializers are applied "before the first use of a
function or object defined in that translation unit".

Calling the function abort() defined in the standard library will terminate the program without
destructors for global static objects being called. Note that some libraries, for example stream
I/O, rely on destruction of global class objects as ahook for flushing I/O buffers. Y ou should
not rely on any particular order of initialization of global objects, and using a startup()
function called from main(), just asin C, still can make sense as a program structuring
mechanism for initializing global objects.

Jumping Past I nitialization

Asweve seen in several examplesin previous newsletters, C++ does much more with
initializing objects than C does. For example, class objects have constructors, and global
objects can have general initializers that cannot be evaluated at compile time.
Another difference between C and C++ isthe restriction C++ places on transferring control
past an initialization. For example, the following isvalid C but invalid C++:

#include <stdio.h>

int main()
{
goto XXX;
{
intx=0;
XXX:
printf("%d\n", x);
}
return O;

}

With one compiler, compiling and executing this program as C code resultsin avaue of 512
being printed, that is, garbage is output. Thus the restriction makes sense.

The use of goto statements is best avoided except in carefully structured situations such as
jumping to the end of a block. Jumping over initializations can aso occur with switch/case
Statements.

117

C++ Tutorids

Function Parameter Names

Suppose that you have a C++ function, and for some reason you don't actually use all the
function parameters:
int sum(int a, int b, int c)

{
}

Many compilers will give awarning in this case to the effect "warning: parameter ¢ not used”.
Thisisperfectly legal code but the warning can be tedious to deal with.

returna+ b; // ¢ not used

C++ has afeature that allows you to simply omit the parameter name:

int sum(int a, int b, int)

{

return a+ b;

and avoid the warning. This feature is especially handy when stubbing out code. A similar
feature existsin catch handlers used in exception handling.

Character Typesand Arrays

There are a couple of differences in the way that ANSI C and C++ treat character constants
and arrays of characters. One of these has to do with the type of a character constant. For
example:

#include <stdio.h>

int main()
printf("%d\n", sizeof('x"));

return O;

}
If this program is compiled as ANSI C, then the value printed will be sizeof(int), typicaly 2
on PCs and 4 on workstations. If the program is treated as C++, then the printed value will be
sizeof(char), defined by the draft ANSI/ISO standard to be 1. So the type of a char constant in
Cisint, whereas the type in C++ ischar. Note that it's possible to have sizeof(char) ==
sizeof(int) for a given machine architecture, though not very likely.
Another differenceisillustrated by this example:

#include <stdio.h>

char buf[5] = "abcde";

118

C++ Tutorids

int main()
{
printf("%s\n", buf);

return O;
}
Thisislegal C, but invalid C++. The string literal requires atrailing \O terminator, and thereis
not enough room in the character array for it. Thisisvalid C, but you access the resulting array
at your own risk. Without the terminating null character, a function like printf() may not work
correctly, and the program may not even terminate.

Function-style Casts

In C and C++ (and Java(tm)), you can cast one object type to another by usage like:
doubled = 12.34;

inti=(int)d;
Casting in this way gets around type system checking. It may introduce problems such as loss
of precision, but is useful in some cases.
In C++ it's possible to employ a different style of casting using afunctional notation:
doubled = 12.34;

inti=int(d);

This example achieves the same end as the previous one.

The type of a cast using this notation is limited. For example, saying:
unsigned long*** p = unsigned long***(0);

isinvalid, and would need to be replaced by:
typedef unsigned long*** T;

Tp=T(0);
or by the old style:
unsigned long*** p = (unsigned long***)0;
Casting using functional notation is closely tied in with constructor calls. For example:
classA {
public:
A();
A(int);
b

void f()
{

119

C++ Tutorids

Ag
a=A(37);
}

causes an A object local to f() to be created viathe default constructor. Then this object is
assigned the result of constructing an A object with 37 asits argument. In this example thereis
both a cast (of sorts) and a constructor call. If we want to split hairs aperhagps more
appropriate technical name for this style of casting is "explicit type conversion”.
It is also possible have usage like:

void f()
{ . .
inti;
I =int();
}

If this example used a class type with a default constructor, then the constructor would be
called both for the declaration and the assignment. But for a fundamental type, acall like int()
resultsin azero value of the given type. In other words, i gets the value O.
The reason for this feature is to support generality when templates are used. There may be a
templ ate such as:

template <class T> class A {

void f()
{

Tt=T(;
}

b
and it's desirable that the template work with any sort of type argument.
Note that there are also casts of the form "static_cast<T>" and so on, which we will discussin
afutureissue.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is areference to the Java Devel opment Kit.

Bit Field Types

120

C++ Tutorids

Here's asmall difference between C and C++. In ANSI C, bit fields must be of type "int",
"signed int", or "unsigned int". In C++, they may be of any integral type, for example:
enum E{el, e2, e3};

classA {
public:
intx:5;
unsigned char y : §;
Ez:5
b
This extension was added in order to allow bit field values to be passed to functions expecting
aparticular type, for example:

void f(E e)

{

}

void g()

{
Ag
az=e3;
f(az);

}

Note that even with this relaxation of C rules, bit fields can be problematic to use. There are
no pointers or referencesto hit fields in C++, and the layout and size of fieldsis tricky and not
necessarily portable.

Anonymous Unions

Here'sasimpleone. In C++ thisusage islegal:
struct A {
union {
int x;
doubley;
char* z;
};
b
whereasin C you'd have to say:
struct A {
union {
int x;
doubley;
char* z;

121

C++ Tutorids

b
h

giving the union a name. With the C++ approach, you can treat the union members as though
they were members of the enclosing struct.

Of course, the members still belong to the union, meaning that they share memory space and
only oneisactive at agiven time.

Empty Classes

Here'sasimple one. In C, an empty struct like:
struct A {};
isinvalid, whereasin C++ usage like:
struct A {};
or:
classB {};
is perfectly legal. Thistype of construct is useful when developing a skeleton or placeholder
for aclass.
An empty class has size greater than zero. Two class objects of empty classes will have
distinct addresses, asin:
classA{};

void f()

{
A* pl=new A,
A* p2=new A,

/' pl!=p2at thispoint ...

There are still one or two C++ compilers that generate C code as their "assembly" language.
To handle an empty class, they will generate a dummy member, so for example:

classA{};
becomes:

struct A {

char __dummy;

b

in the C output.

Hiding Names

122

C++ Tutorids

Consider this small example:
#include <stdio.h>

int xxx[10];

int main()
{
struct xxx {
int g
};

printf("%d\n", sizeof(xxx));

return O;

When compiled as C code, it will typicaly print avaue like 20 or 40, whereas when treated as
C++, the output value will likely be 2 or 4.

Why isthis? In C++, the introduction of the local struct declaration hides the global "xxx", and
the program is simply taking the size of a struct which has asingle integer member in it. In C,

"sizeof(xxx)" refersto the global array, and atag like "xxx" doesn't automatically refer to a
struct.

If we said "sizeof(struct xxx)" then we would be able to refer to the local struct declaration.

123

C++ Tutorids

C++ Performance

Handling a Common strcmp() Case

Handling Lots of Small Strings With a C++ Class

Hidden Constructor/Destructor Costs

Declaration Statements

Stream 1/O Performance

Stream 1/O Output

Per-class New/Delete

Duplicate Inlines

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is a reference to the Java Devel opment Kit.

Handling a Common strcmp() Case

In this section of the newsletter we will present some practical performance tips for improving
code speed and reducing memory usage. Some of these tips will be useful only for C++ code
and some will be more general and applicable to C or other languages.

As afirst example, consider an application using C-style strings and functions such as
strcmp(). A recent experience with this sort of application involved a function that does word
stemming, that is, takes words such as "motoring” and reduces them to their root stem, in this
case "motor".

In profiling this function, it was observed that much of the overall time was being spent in the
strcmp() function. For the C++ compiler in question (Borland 3.1), this function is written in
assembly language and is quite fast, and attempts to speed it up by unrolling the equivalent
code locally at the point of function call will typicdly result in slowing things down.

124

C++ Tutorids

But it's ill the case that calling a function, even one implemented in assembly language, has
some overhead, which comes from saving registers, manipulating stack frames, actual transfer
of control, and so on. So it might be worth trying to exploit a common case -- the case where
you can determine the relationship of the strings by looking only at the first character.
So we might use an inline function in C++ to encapsul ate thislogic:

inlineint local_strcmp(const char* s, const char* t)

{

return (*s!=*t?*s- *t . strcmp(s, t));

If the first characters of each string do not match, there's no need to go further by calling
strcmp(); we aready know the answer.
Another way to implement the same ideais viaa C macro:

#define local_strcmp(s, t) ((s)[O] '= (1)[0] ? (9)[O] - (V)[O] : \

stremp((s). (1))

This approach has a couple of disadvantages, however. Macros are hard to get right because of
the need to parenthesize arguments so as to avoid subtly wrong semantics. Writing
local_strcmp() asareal function is more natural.
And macros are less likely to be understood by development tools such as browsers or
debuggers. Inline functions are also a source of problems for such tools, but they at least are
part of the C++ language proper, and many C++ compilers have away of disabling inlining to
help address this problem.
How much speedup is this approach good for? In the word stemming program, for input of
about 65000 words, the times in seconds were:

stremp() 9.7

inlinelocal_strcmp() 7.5

#definelocal_strcmp() 7.5
or asavings of about 23%. Obviously, this figure will vary with the compiler and the
application.
This particular speedup is achieved by exploiting acommon case -- the case where the first
letters of two strings are different. For applications involving English words, thisis often a
good assumption. For some other types of strings, it may not be.

Handling L otsof Small Strings With a C++ Class

In performance tips this issue, we will present acomplete C++ class along with its
implementation code, which is gopended to the end of the discussion.

This C++ example addresses a common problem in applications that use alot of small strings.
The problem has to do with the overhead associated with all ocating the string viamalloc() (in
C) or operator new() (C++). Typically, such overhead is 8-16 bytes per string. And allocating
then deallocating many small blocks will tend to fragment memory.

125

C++ Tutorids

The Copy class deals with the problem by internally allocating large blocks and then shaving
off small chunks for individual strings. It keeps track of all the large blocks allocated and
deallocates them when a given Copy object isno longer needed. To use this system, you
would allocate a Copy object for each major subsystem in your application that uses small
strings. For example, at one point in your application, you might need to read in adictionary
from disk and use it for awhile. Y ou would allocate a Copy object and then use it to all ocate
the strings for each word, then flush the strings all at once.

In the application that this class was devised for, implementing string copying in this way
saved 50K out of atotal available memory pool of 500K. Thisiswith Borland C++, which
rounds the number of requested bytes for a string to the next multiple of 16, or an average
wastage of 8 bytes. Since the Copy class uses 1024-byte chunks, on average 512 bytes will be
wasted for a given set of strings, so the breakeven point would be 512 / 8 = 64 or more strings.
There are many variations on this theme. For example, if you are certain that the strings will
never be freed, then you can simply grab a large amount of memory and shave chunks off of
it, without worrying about keeping track of the allocated memory. Or if you have many
objects of one class, such as tree nodes, you can overload operator new() for that classto do a
similar type of thing.

Note that this particular storage allocator is not general. The allocated storage is aligned on 1-
byte boundaries. This means that trying to allocate other than char* objects may result in
performance degradation or amemory fault (such as "bus error" on UNIX systems). And the
performance gains of course decline somewhat with large strings, while the wastage increases
from stranding parts of the 1024-byte all ocated chunks.

This same approach could be used in C or assembly language, but C++ makesiit easier and
encourages this particular style of programming.

An example of usageisincluded. A dictionary of 20065 words with total length 168K is read
in. Without use of the Copy class it requires 354K, an 111% overhead. With the Copy class it
takes 194K, an overhead of 15%. Thisis adifference of 160K, or 8 bytes per word. The results
will of course vary depending on a particular operating system and runtime library. And the
Copy version runs about 20% faster than the conventional version on a 486 PC.

The driver program that isincluded will work only with Borland C++, so you will need to
write some other code to emulate the logic.

#include <string.n>
#include <assert.n>

const int COPY_BUF =1024; // size of buffer to get const int COPY_VEC = 64; // starting
size of vector

class Copy {
int In; /I number of buffersin use
int maxin; /l max size of vector
char** vec; /I storage vector
int freelen; Il length free in current
char* freestr; /I current free string
public:
Copy(); /I constructor

126

C++ Tutorids

~Copy(); /I destructor

char* copy(char*); /l copy astring
1
/I constructor
Copy::Copy()

{
In=0;
maxin = 0;
vec =0;
freelen = 0;
freestr = 0;

}

/I destructor

Copy::~Copy()
{ inti;
/I delete buffers

for (I=0;i<In;i++)
delete vec[i];

/I delete vector itself

if (vec)
delete vec;

}
/I copy astring char* Copy::copy(char* s) {
inti;
char** newvec;
int len;
char* p;
assert(s&& *s);
len = strlen(s) + 1;
/[first time or current buffer exhausted?

if (len> freelen) {
if ('vec || In==maxlIn) {

/I reallocate vector

maxIn = (maxIn ?maxin* 2 : COPY_VEC);
newvec = new char*[maxin];

127

C++ Tutorids

assert(newvec);
for (I =0;i<In;i++)
newvec[i] = vec[i];
if (vec)
delete vec;
VEC = NeWVEC;

}

/! dlocate new buffer

vec[In] = new char[COPY_BUF];
assert(vec[In]);

freelen = COPY_BUF,

freestr = vec|[In];

In++;

}

/[alocate and copy string

freelen -= len;

p = freestr;
freestr += len;
strepy(p, 9);
return p;

}

#ifdef DRIVER

#include <stdio.h>
#include <aloc.h>

main() {
long cl;
const int MAXLINE = 256;
char buf[MAXLINE];
FILE* fp;
char* s,
#ifdef USE_COPY
Copy co;
#endif
cl = coreleft();
fp = fopen("c:/src/words’, "r");
assert(fp);
while (fgets(buf, MAXLINE, fp) '=NULL) {
#ifdef USE_COPY
s = co.copy/(buf);

128

C++ Tutorids

#else
s = new char[strlen(buf) + 1];
assert(s);
strepy(s, buf);
#endif
}
fclose(fp);
printf("memory used = %ld\n", cl - coreleft());

return O;

}
#endif

129

C++ Tutorids

Hidden Constructor/Destructor Costs

Consider a short example of C++ code:
classA {
intx,vy,z
public:
AQ);
1

classB {
Ag

public:

} BO {}

A:A){x=0;y=0;z=0;}
Class A has a constructor A::A(), used to initialize three of the class's data members. Class B
has a constructor declared inline (defined in the body of the class declaration). The constructor
is empty.
Suppose that we use alot of B class objects in a program. Each object must be constructed, but
we know that the constructor function body is empty. So will there be a performance issue?
The answer is possibly "yes", because the constructor body really is NOT empty, but contains
acall to A::A() to construct the A object that is part of the B class. Direct constructor calls are
not used in C++, but conceptually we could think of B's constructor as containing this code:
B::B(){aA:A();} /I construct "a" objectinB class
There's nothing sneaky about this way of doing things; it falls directly out of the language
definition. But in complex cases, such as ones involving multiple levels of inheritance, a
seemingly empty constructor or destructor can in fact contain alarge amount of processing.

Declar ation Statements

Suppose that you have a function to compute factorials (1 x 2 X ... N):
double fact(int n)

{
doublef =1.0;
inti;
for (i=2;i<=n;i++)
f *=(double)i;
return f;
}

130

C++ Tutorids

and you need to use this factoria function to initialize a constant in another function, after
doing some preliminary checks on the function parameters to ensure that all are greater than
zero. In C you can approach this a couple of ways. In the first, you would say:
[* return -1 on error, else 0 */
int f(int & int b)
{
const double f = fact(25);

if (@<=0]||b<=0)
return -1;

[* usef in caculations */

return O;
This approach does an expensive computation each time, even under error conditions. A way
to avoid thiswould be to say:

/* return -1 on error, else 0 */
int f(int &, int b)

{
const doublef = (a<=0|b<=07?0.0: fact(25));
if(@<=0||b<=0)
return -1;
/* usef in calculations */
return O;
}

but the logic isabit torturous. In C++, using declaration statements (see above), this problem
can be avoided entirely, by saying:

[* return -1 on error, else 0 */

int f(int & int b)

{
if(@<=0]||b<=0)
return -1;
const double f = fact(25);
/* usef in calculations */
return O;
}

131

C++ Tutorids

Stream 1/O Perfor mance

Is stream I/O slower than C-style standard I/O? This question is a bit hard to answer. For a

simple case like:
#ifdef CPPIO
#include <iostream.h>
#else
#include <stdio.h>
#endif

main()

{

long cnt = 1000000L ;

while (cnt-- > 0)
#ifdef CPPIO
cout << 'X';
#else
putchar('x");
#endif
return O;
}

the C++ stream 1/O approach is about 50% slower for acouple of popular C++ compilers. But

putchar() isamacro (equivalent to an inline function) that has been tuned, whereas the C++
functionsin iostream.h are less tuned, and in the 50% slower case not all the interna little
helper functions are actually inlined. We will say more about C++ function inlining some
other time, but one of the issues with it is trading space for speed, that is, doing alot of
inlining can drive up code size.

And 50% may be irrelevant unless I/O is a bottleneck in your program in the first place.

Stream 1/0O Output

In issue #006 we talked about stream 1/O, and an example like this was shown:

cout << x << "\n";

A couple of people wrote. One said that:

cout << x << endl;

was preferable, while another said:

cout << x << "'\n";

132

C++ Tutorids

would be a better choice on performance grounds, that is, output asingle character instead of a
C string containing a single character.

Using one popular C++ compiler (Borland C++ 4.52), and outputting 100K lines using these
three methods, the running times in seconds are:

“\n" 1.9
\n' 1.3
end| 13.2

Outputting a single character is alittle simpler than outputting a string of characters, so it'sa
bit faster.

Why is endl much slower? It turns out that it has different semantics. Besides adding a
newline character like the other two forms do, it also flushes the output buffer. On a UNIX-
like system, this means that ultimately awrite() system call isdone for each line, an expensive
operation. Normally, output directed to afile is buffered in chunks of size 512 or 1024 or
similar.

The Borland compiler has a#define called _BIG_INLINE_ in iostream.h that was enabled to
do more inlining and achieve the times listed here.

Does this sort of consideration matter very much? Most of the time, no. If you're doing
interactive 1/0O, it is best to write in the style that is plainest to you and others. If, however,
you're writing millions of charactersto files, then you ought to pay attention to an issue like
this.

Note aso that there's no guarantee that performance characteristics of stream /O operations
will be uniform across different compilers. It's probably true in most cases that outputting a
single character is cheagper than outputting a C string containing a single character, but it
doesn't have to be that way.

Per -class New/Delete

Some types of applications tend to use many small blocks of space for allocating nodes for
particular types of data structures, small strings, and so on. In issue #002 we talked about a
technique for efficiently allocating many small strings.
Another way of tackling this problem is to overload the new/delete operators on a per-class
basis. That is, take over responsibility for allocating and deallocating the storage required by
class objects. Here is an example of what this would look like for aclass A:

#include <stddef.h>

#include <stdlib.h>

classA {
int data;
A* next;
#ifdef USE_ND

133

C++ Tutorids

static A* freelist; I/ pointer to freelist
#endif
public:
AQ);
~A();
#ifdef USE_ND
void* operator new(size t); // overloaded new()
void operator delete(void*); // overloaded delete()
#endif

H

#ifdef USE_ND
A* A:freelist =0;

inline void* A::operator new(size t sz)

{

/I get free node from freelist if any

if (freelist) {
A* p =fredist;
freelist = freglist->next;
return p;

}

/I cal maloc() otherwise

return malloc(sz);

}

inline void A::operator delete(void* vp)

{
A* p=(A*)vp;

/I link freed node onto freelist

p->next = freelist;
freelist = p;

}

#endif

AZAQ {}
A~AQ {}
#ifdef DRIVER

const int N = 1000;
A* gptr[N];

C++ Tutorids

int main()
{
inti;
intj;
/I repeatedly allocate / deallocate A objects
for (i=1;i<=N;i++){
for j =0;j <N;j++)

aptr[j] = new A();
for j =0;j <N;j++)

delete aptr{j];
}
return O;
}
#endif

We've aso included adriver program. For this example, that recycles the memory for object
instances, the new approach is about 4-5X faster than the standard approach.

When new() is called for an A type, the overloaded function checks the free list to seeif any
old recycled instances are around, and if so one of them is used instead of calling malloc().
Thefreelist is shared across all object instances (the freelist variable is static). delete() simply
returns a no-longer-needed instance to the free list.

This technique is useful only for dynamically-created objects. For static or local objects, the
storage has already been allocated (on the stack, for example).

We have again sidestepped the issue of whether afailure in new() should throw an exception
instead of returning an error value. Thisis an areain transition in the language.

There are other issues with writing your own storage allocator. For example, you have to make
sure that the memory for an object is adigned correctly. A double of 8-byte length may need to
be aligned, say, on a4-byte boundary for performance reasons or to avoid addressing
exceptions ("bus error - core dumped” on a UNIX system). Other issues include fragmentation
and support for program threads.

DuplicateInlines

Suppose that you have a bit of code such as:
inline long fact(long n)
{
if (n<2)

135

C++ Tutorids

return 1,
else
return n* fact(n - 1);
}
int main()
long x = fact(23);
return O;
}

to compute the factoria function viaarecursive adgorithm. Will fact() actually be expanded as
an inline? In many compilers, the answer isno. The “inline" keyword is simply a hint to the
compiler, which isfreetoignoreit.
So what happens if the inline function is not expanded as inline? The answer varies from
compiler to compiler. The traditional approach isto lay down a static copy of the function
body, one copy for each translation unit where the inline function is used, and with such
copies persisting throughout the linking phase and showing up in the executable image. Other
approaches lay down a provisional copy per trandation unit, but with a smart linker to merge
the copies.
Extra copies of functionsin the executable can be quite wasteful of space. How do you avoid
the problem? One way isto use inlines sparingly at first, and then selectively enable inlining
based on program profiling that you've done. Just because a function is small, with a high call
overhead at each invocation, doesn't necessarily mean that it should be inline. For example,
the function may be called only rarely, and inlining might not make any difference to the total
program execution time.
Another approach diagnoses the problem after the fact. For example, here's asimple script that
finds duplicate inlineson UNIX systems:

#!/bin/sh

nm $@ |

egrep't’|

awk ‘{print $3}' |

sort |

uniqg -c |

sort -nr |

awk '$1 > = 2{print}' |

demangle
nm is atool for dumping the symbol tables of objects or executables. A " t " indicates a static
text (function) symbol. A list of such symbolsisformed and those with a count of 2 or more
filtered out and displayed after demangling their C++ names ("demangle" has various names
on different systems).
Thistechnique is ssimply illustrative and not guaranteed to work on every system.
Note also that some libraries, such as the Standard Template Library, rely heavily on inlining.
STL isdistributed as a set of header files containing inline templates, with the idea being that
the inlines are expanded per translation unit.

136

C++ Tutorids

Much of the time such an approach is perfectly acceptable, but it's worth at |east knowing
what's going on behind the scenes with inlining, and what you can do about it if performance
IS not acceptable.

Writing Robust Code

Assert and Subscript Checking

Constructors and Integrity Checking

Stream 1/O

Assert and Subscript Checking

Many of the techniques used in writing robust C code aso apply in C++. For example, if you
have a function that is supposed to be passed a person's name, as a C-style string, it would be
wiseto say:

#include <assert.n>

void f(char* name)

{

assert(name & & *name);

}

to perform basic checks on the passed-in pointer. assert() is a function (actually a macro) that
checks whether its argument is true (non-zero), and aborts the program if not.

But C++ offers additional opportunities to the designer interested in producing quality code.
For example, consider acommon problem in C, where vector bounds are not checked during a
dereference operation, and a bad location is accessed or written to.

In C++, you can partialy solve this problem by defining aVector class, with avector
dereferencing class member defined for the Vector, and the vector size stored:

#include <stdio.h>
#include <assert.h>

137

C++ Tutorids

class Vector {
int len; /I number of elements
int* ptr; /I pointer to elements
public:
Vector(int); /I constructor
~Vector(); /I destructor
int& operator[](int); // dereferencing
1
//constructor
Vector::Vector(int n)
{
assert(n >= 1);
len=n; /I store length
ptr =new int[n]; // get storage to store elements
assert(ptr);
}
//destructor
Vector::~Vector()
{
delete ptr;
}

[/dereferencing int& Vector::operator[](int 1) {
assert(i >=1 && i <=len);

return ptr[i - 1]; // return reference to vector sl ot

}
/[driver program main() {
inti;
const int N = 10;
Vector v(N);
for (Ii=1;1 <= N;i++) /I correct usage
V[i] =1*1i;
for (i=1;1<=N;i++) /I correct usage
printf("%d %d\n", i, v[i]);
v[0] =0; /[will trigger assert failure
return O;
}

In this example, we create avector of 10 elements, and the vector isindexed 1..10. If the

vector is dereferenced illegally, asin:

138

C++ Tutorids

v[0] =0;
an assertion failure will be triggered.
One objection to this technique isthat it can be slow. If every vector reference requires a
function call (to Vector::operator[]), then there may be alarge performance hit. However,
performance concerns can be dealt with by making the dereferencing function inline.
Two other comments about the above example. We are assuming in these newsdletters that if
operator new() fails, it returnsaNULL pointer:

ptr = new int[n];

assert(ptr); Il check for non-NULL pointer
The current draft ANSI standard says that when such afailure occurs, an exception is thrown
or else anew handler isinvoked. Because many C++ implementations still use the old
approach of returning NULL, we will stick with it for now.
The other comment concerns the use of references. In the code:

v[i] =1*1i;
the actual code is equivalent to:

v.operator[] (i) =i * i;
and could actually be written this way (see a C++ reference book on operator overloading for
details).
Vector::.operator[] returns areference, which can be used on the left-hand side of an
assignment expression. In C the equivalent code would be more awkward:
#include <stdio.h>
int x[10]; // use f() to index into x[10]
int* f(int i) {

return &x[i - 1];

}

main() {
*f(5) = 37;
printf("%d %d\n", *f(5), x[4]);
return O;

}

Constructors and I ntegrity Checking

Imagine that you want to devise away to represent calendar dates for usein a C program. You
come up with astruct:

struct Date {
int month;
int day;
int year;
1

139

C++ Tutorids

and a program using the Date struct can initialize astruct like so:
struct Date d;

d.month=9;
d.day = 25;
d.year = 1956;
And you devise various functions, for example one to compute the number of days between
two dates:
long days b_dates(struct Date* di, struct Date* d2);
This approach can work pretty well.
But what happens if someone says:
struct Date d;

d.month =9;

d.day = 31,

d.year = 1956;
and then calls afunction like days b_dates()? The date in this example isinvalid, because
month 9 (September) has only 30 days. Once an invalid date is introduced, functions that use
the date will not work properly. In C, one way to deal with this problem would be to have a
function to do integrity checking on each Date pointer passed to afunction like
days b dates().
In C++, asimpler and cleaner approach is to use a constructor to ensure the validity of an
object. A constructor is afunction called when an object comes into scope. So | could say:

#include <assert.h>

class Date {

int month;

int day;

int year;

static int isleap(int);
public:

Date(int, int, int);
b

const char days in_month[12] = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};

/I return 1 if year isaleap year, else 0
int Date::isleap(int y)

if (y%4)
return O;
if (y % 100)
return 1;
if (y % 400)
return O;
return 1;

140

C++ Tutorids

}

/I constructor for Date class
Date::Date(int m, int d, int y)

{
assert(im>=1 & & m<=12);
assert(d >=1);
assert(y >= 1800 & & y <= 2099);
assert(d <= days_in_month[m-1] ||
(Mm==2&& d==29 && isleap(y)));
month = m;
day =d;
year =Yy,
}

Date d(9, 25, 1956);
This logic does acomplete check of the date. It ensures that a Date object has internal
integrity. Note that the three data members of the Date object are private to the class, meaning
that arandom user of a Date class object cannot change them, and instead must rely on the
constructor for setting the value of a Date object.

141

C++ Tutorids

Stream |/O

Suppose that you wish to output three values and you use some C-style output to do so:
printf("%d %d %d\n", a, b);

What is wrong here? Well, the output specification calls for three integer values to be output,

but only two were specified. Y ou can probably "get away" with this usage without your

program crashing, with the printf() routine picking up a garbage value from the stack. But

many cases of thisusage will crash the program.

A similar case would be:

printf("%d %d %d\n", a b, c, d);
which is even more likely to work, with the extraargument ignored. This problem isintrinsic
to printf() and related functions.
Using stream I/O as illustrated above eliminates this particular problem completely:
cout<<a<<""<<p<<""<<c<<"\n";
aswell asthe related problem illustrated by:
int &

printf("%s\n", a);
where the argument is of the wrong type. Stream 1/O is fundamentally safer than C-style 1/0;
stream 1/O is said to be "type safe".

Miscellaneous Topics

Standard Template Library

C++ and Java(tm)

Book Review - The Mythical Man-Month

Caendar Date Class

Boyer-Moore-Horspool String Searching

Book Review - Inner Loops

142

C++ Tutorids

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is a reference to the Java programming language. When the JDK
trademark appears alone it is a reference to the Java Devel opment Kit.

Standard Template Library

STL isaC++ library that has been voted by ANSI to be part of the C++ standard library.
We normally think of software libraries as being sets of functions like printf() or malloc(). But
the STL library is different. It's a collection of C++ templates, that is, parameterized types. For
example, thereis atemplate for manipulating lists, and you can have lists of ints or doubles or
void*** pointers or class A objects. Thisiswhat is meant by "template” or "parameterized
type'. A template is kind of like a C++ class except that you can specify parameters to the
template to indicate what types it should operate upon.
The virtue of this gpproach is that one can implement an algorithm once, say for sorting alist,
and then use the algorithm for any types of data that would bein alist -- numbers, strings,
class objects, and so on.
Templates are alittle bit like C macros, and STL is distributed as a set of header files.
Combining atemplate with particular argument types is a process known as “instantiation”,
and atemplate bound to particular arguments is known as a "template class'. So, for example,

template <class T> classList{ ... };
isalList template declaration, and

List<double> dlist;
declares avariable "dlist" of the template class List<double>, which is instantiated by
supplying the type argument “double" to the List template.
Y ou can find out more about STL viathis Web site:

http://www.cs.rpi.edu/~musser/stl.html
or download an implementation of the library via FTP from:

butler.hpl.hp.com

C++ and Java(tm)

Y ou may have heard recently of the programming language Java(tm), being pushed by Sun
Microsystems as the language for Internet programming on the World Wide Web. Thereisa
lot of hoopla about this at present. However, it's interesting to look a Javasimply as a
language, divorced from its Internet context. C++ was based on C, and Javais based at least in
part on C++.

143

http://www.cs.rpi.edu/~musser/stl.html

C++ Tutorids

Giving adetailed comparison of the languages is beyond the scope of the newdletter, but if
you wish to find out more, there are several placesto look. Sun has a Web site:
http://java.sun.com
with useful information in it, and an anonymous FTP site as well:
java.sun.com
Another Web site with pointers to many Javaresourcesis:
http://www.gamelan.com
I've also looked at the book "Javal" by Tim Ritchey, which appears to have alot of useful
information that gives some context to the language and its use. There are many more Java
books in the works that will be gppearing in the next few months.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is a reference to the Java Development Kit.

Book Review - The Mythical Man-M onth

Some of you may have heard of the book "The Mythical Man-Month" by Fred Brooks. It was
first published in 1975 and was updated last year. It is published by Addison-Wed ey and costs
about $25, and is considered a classic with 250,000 copiesin print. Brooks was the manager of
the project that developed OS/360 during the early 1960s.
The subject of the book is software development and the complexities associated with it. In the
earlier chapters, which have not been updated since the 1975 edition, he talks about a variety
of issues. One of my favorite partsisin thefirst chapter, entitled "The Tar Pit". In the
discussion in this chapter he distinguishes four stages in the evolution of a finished software
product:

(1) aprogram

(2) aprogramming system, with interfaces and system
integration

(3) aprogramming product, with generalization, testing,
documentation, and maintenance

(4) aprogramming systems product

A program is something you might quickly put together in afew hours or days or weeks. But
to take the additional two steps of coming up with a programming system or programming

144

http://java.sun.com
http://www.gamelan.com

C++ Tutorids

product is alot of additional work, on the order of 3X as Brooks describes it. Each of these
steps is independent, therefore Brooks talks about a 9X ratio of cost between aprogram and a
programming systems product.

Of course, 9X isn't amagic figure, but it captures the huge difference in cost between hacking
out a few thousand lines of code over the weekend and putting out a polished product to
customers.

The book has been updated with significant new material. He discusses the promise and
practicality of object-oriented programming, software reuse, and so on.

Highly recommended.

Calendar Date Class

Asameans of illustrating what an actual large and complete C++ class looks like, we will
present a class for managing calendar dates. Commentary on this classis given below the
source.
First of al, the header:

I/ Date class header file

#ifndef _ DATE H__
#define_ DATE H__

typedef unsigned short Drep; /I internal storage format

const int MIN_YEAR = 1875;
const int MAX_Y EAR = 2025;
const Drep MAX_DAY =55152;
const int DOW_MIN = 6;

class Date {
Drepd; /[actual date
staticint init_flag; Il init flag
static int isleap(int); I leap year?
static Drep cdaysMAX_YEAR-MIN_YEAR+1]; // cumul days per yr
static void init_date(); /[initialize date

static Drep mdy_to_d(int, int, int); // m/dly --> day
static void d_to_mdy(Drep,int& ,int&,int&);// day --> m/dly

public:
Date(Drep); /Il constructor from internal
Date(const Date&); Il copy constructor
Date(int, int, int); /I constructor from m/d/y
Date(const char*); /I congtructor from char*
operator Drep(); /I conversion to Drep

145

C++ Tutorids

void print(char* = (char*)0); // print

void get_mdy(int&, int&, int&); // get m/d/y

long operator-(const Date&); // difference of dates

int dow(); /I day of week

long wdays(const Date&); /I work days between dates

H

#endif
and then the source itself, along with adriver program:
/I Date class and driver program

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <assert.h>
#include "date.h"

/I days in the various months
const char days in_month[12] = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31};

Drep Date::cdaysiMAX_YEAR - MIN_YEAR + 1];
int Date::init_flag = 0;

/] initidlize date structures
void Date::init_date()
{

inti;

Drep cumul = 0;

init_flag=1,

for (i =MIN_YEAR; i <= MAX_YEAR;i++){
cumul += 365 + isleap(i);
cdayg[i - MIN_Y EAR] = cumul;

}

Il aleap year?
int Date::isleap(int year)
{
if (year % 4)
return O;
if (year % 100)
return 1;
if (year % 400)
return O;

146

C++ Tutorids

}

return 1;

/I convert m/d/y to internal date
Drep Date::mdy_to_d(int month, int day, int year)

{

}

inti;
Drep d;

assert(month >= 1 && month <= 12);
assert(day >=1);
assert(year >= MIN_YEAR && year <= MAX_YEAR);
assert(day <= days_in_month[month - 1] ||
(day == 29 & & month == 2 & & isleap(year)));

if (linit_flag)
init_date();

d = (year > MIN_YEAR ?cdays[year - MIN_YEAR - 1] : 0);
for (i = 1; i <month; i++)

d +=days in_month[i - 1] + (i == 2 & & islegp(year));
d +=day;

return d;

/I convert internal date to m/d/y
void Date::d_to_mdy(Drep d, int& month, int& day, int& year)

{

inti;
Drept;

if (linit_flag)
init_date();

for (i =MIN_YEAR; i <= MAX_YEAR;i++){
if (d<=cdayd]i - MIN_YEAR])
break;
}
assert(i <= MAX_YEAR);
if i >MIN_YEAR)
d-=cdayqi - MIN_YEAR - 1];
year =1i;

for(i=1;i<=12;i++){
if (d<=(t=days_ in_monthl[i - 1] +
(i==2 && isleap(year))))

147

C++ Tutorids

break;
d-=t;
}
assert(i <= 12);
month =1i;
day =d;

}

Il constructor from a Drep
Date::Date(Drep dt)
{

assert(dt <= MAX_DAY);

d=dt;
}

#define ISDEL(c) () =="' || (©) =="' || (©) == ")

static const char* mon[12] ={
Ilj ar]",
"feb",

“jul”,
"aug",
"sep”,
"oct",
"nov",
"dec”

h

/I constructor from a char* string
Date::Date(const char* s)
{

char buf[3][25];

inti;

intj;

int mo;

int dy;

intyr;

assert(s&& *s);

/] break into fields

148

C++ Tutorids

i=0;
for (;;) {
if (i == 3)
break;
while (*s&& (*s<=""||ISDEL(*9)))
St
if (1*s)
break;
j=0;
if (isdigit(*9)) {
while (isdigit(*s))
buf[i][j++] = *s++;
buf[i][j] = 0;
i++;
}
elseif (isalpha(*s)) {
while (isalpha(*s))
buf[i][j++] = tolower(*s++);
buf[i][j] = 0;
i++;
}
else{
break;
}
}
assert(i == 3);
// month

i=0;
if (isal pha(buf[1][0]))
i=1;
if (isalpha(buf[i][0])) {
if (buf[i][3])
buf[i][3] = O;
for (j =0;j <12;j++) {
if (!stremp(buf[i], mon(j]))
break;
}

Jt+;

mo = j;
}
else{

mo = atoi (buf[i]);
}

149

C++ Tutorids

Il day

i=;
dy = atoi (buf[i]);

Il year

yr = atoi(buf[2]);
if (yr <100)
yr += 1900;

d=mdy_to_d(mo, dy, yr);
}

I/ copy constructor
Date::Date(const Date& Xx)

{
}

/I constructor from m/d/y
Date::Date(int month, int day, int year)
{

}

/I conversion operator to Drep
Date::operator Drep()

{
}

/I print adate
void Date::print(char* s)
{

d=x.d;

d =mdy_to_d(month, day, year);

return d;

int month;
int day;

int year;

char buf[25];
char* t;

d_to_mdy(d, month, day, year);
t=(s?s: buf);
sprintf(t, "%02d/%02d/%4d", month, day, year);
if (Is)
printf("%s", t);

150

C++ Tutorids

/I get m/d/y from internal
void Date::get_mdy(int& mo, int& dy, int& yr)

d_to_mdy(d, mo, dy, yr);
}

/I difference in days of two dates
long Date::operator-(const Date& dt)

{
return long(d) - long(dt.d);
}
/l day of week
int Date::dow()
{
Drepdw=(d-1) % 7 + DOW_MIN;
if (dw>7)
dw =7,
return dw;
}

/[working days between two dates
long Date::wdays(const Date& dt)
{

long n;

Drepi;

int mo, dy, yr;

int dw;

assert(d <= dt.d);

n=0;
for (i =d; i <=dtd;i++){
Date x(i);
dw = x.dow();
if (dw==1) Il sunday
continue;
if (dw==7) /I saturday
continue;
x.get_mdy(mo, dy, yr);
if (mo==5&& dy>=25&& dw==2) // memorid

continue;
if(mo==9&& dy<=7&& dw==2) //labor
continue;
if (Mo==11&& dy>=22&&
dy <=28 && dw ==5) /I thanks

151

C++ Tutorids

}

continue;

if(mo==1&& dy==1) Il new years
continue;

if (Mmo==12&& dy==31&& dw ==6)
continue;

if(mo==1&& dy==2&& dw==2)
continue;

if (mo==7&& dy ==4) I 4th july
continue;

if (mo==7&& dy==3&& dw ==6)
continue;

if (mo==7&& dy==5&& dw==2)
continue;

if (mo==12&& dy ==25) /I christmas
continue;

if (mo==12&& dy ==24 && dw ==6)
continue;

if (mo==12&& dy ==26 && dw ==2)
continue;

n++:

return n;

}

#ifdef DRIVER

int main()

{

char buf[25];

for () {

printf("date 1: ");

gets(buf);

Date d1(buf);

printf("date 2: ");

gets(buf);

Date d2(buf);

printf("calendar days = %ld\n", d2 - d1);
printf("work days = %ld\n\n", d1.wdays(d2));

}

return O;
}
Hendif

1. Thisclass represents calendar dates for the years 1875 to 2025. An actual date is stored as

an absolute day number with January 1, 1875 as the basis. There are other ways of storing
dates, for example by representing the month/day/year as integers.

152

C++ Tutorids

2. The header file uses an includeguard _ DATE H__ sothat it can be included multiple
times without error. It's common in large programming projects to have headers included more
than once.
3. The Date class uses a set of private static utility functions, for example one that determines
if agiven year isaleap year or not. These functions are private to the class but do not operate
on object instances of the class.
4. There are a set of constructors used to build Date objects. One of these is a copy constructor
and two others are used to create Date objects from a month/day/year set of numbers, or from
astring which has the date formatted in one of severa forms:

September 25, 1956

9/25/56

92556
This particular constructor will be confused by dates written in the
European format, for example:

25/9/56
5. There are member functions for determining what day of the week a given date is (Sunday -
Saturday), and for computing the number of days between two dates.
6. Thereis dso amember function for computing the number of work days between two dates
(inclusive of beginning and end dates). This function is somewhat arbitrary and encodes rules
used in the United States, including boundary holidays (for example, if New Year'sison a
Sunday, Monday will be taken as a holiday).
7. The functions for turning month/day/year into an internal number, and vice versa, use a
precomputed vector that gives the cumulative days since 1875 for a given year. Given this
vector, the approach is straightforward and brute force.
8. The day of week calculation uses modulo arithmetic, based on a known day of week for
January 1, 1875.
9. There are various other ways of handling dates. For example, the UNIX system represents
time as the number of seconds since midnight UTC on January 1, 1970. For file timestamps
and so on, adate system with a granularity of awhole day would not work. As another
example, the western world changed its calendar system in September of 1752, and the above
code would not work across this boundary, even if the Drep representation would handle the
number of days involved.

Boyer-M oore-Hor spool String Sear ching

As another example of how a class can represent an abstraction, consider the problem of
searching a char* string for a given pattern. In the C library there is a strstr() function for
doing this. But suppose that we wish to implement our own scheme, based on one of the

153

C++ Tutorids

relatively new high-performance algorithms for searching like the Boyer-M oore-Horspool one
(see the book "Information Retrieval" by William Frakes for a description of this algorithm).
This particular algorithm does some preprocessing of the pattern, as ameans of determining
how far to skip ahead in the search text if an initial match attempt fails. The results of the
preprocessing are saved in a vector, that is used during the search process.
It is quite possible but inconvenient and inefficient to code this algorithmin C, especialy if
the same pattern is to be applied to alarge body of text. If coding in C, the preprocessing
would have to be done each time, or el se saved in an auxiliary structure that is passed to the
search function.
But with C++, using aclass abstraction, this algorithm can be implemented quite neatly:

#include <string.h>

#include <assert.h>

#include <stdio.h>

class Search {
static const int MAXCHAR = 256;
int IMAXCHAR];
int m;
char* patt;
public:
Search(char*);
int find(char*);
b

Search::Search(char* p)
{

assert(p);

patt = p;
m = strlen(patt);

intk=0;

for (k = 0; k < MAXCHAR,; k++)
d[k] = m;

for (k=0; k<m- 1; k++)
dipatt[K]] =m -k - 1,
}

int Search::find(char* text)
{

assert(text);
int n = strien(text);

if (m>n)
return -1;

154

C++ Tutorids

}

intk=m-1;

while (k <n){
intj=m-1;
inti =k;
while (j >= 0 && text[i] == patt[j]) {
==

}
if j==-1)
returni + 1;
k += d[text[K]];
}
return -1;

#ifdef DRIVER
int main(int argc, char* argv[])

{

}
#endif

We've added a short driver program, to produce a search program something like the UNIX

assert(argc == 3);

const int MAXLINE = 256;
char fouff MAXLINE];

Search patt(argv[1]);

FILE* fp = fopen(argv[2], "r");
assert(fp);

int nf =0;

while (fgets(fouf, MAXLINE, fp) != NULL) {
if (patt.find(fbuf) != -1) {

fputs(fbuf, stdout);
nf++;

}

fclose(fp);

return Inf;

"fgrep" tool.
We construct a Search object based on a pattern, and then apply that pattern to successive lines
of text. Search::find() returns -1 if the pattern is not found, else the starting index >= 0 in the

text.

155

C++ Tutorids

Whether this algorithm will be faster than that available on your local system depends on
several factors. A standard library function like strstr() may be coded in assembly language.
Also, there's another class of string matching agorithms based on regular expressions and
finite state machines, with different performance characteristics.

This simple program illustrates away of wrapping the details of aparticular algorithm into a
neat package, hidden from the user.

Book Review - Inner Loops

"Inner Loops" is the name of abook by Rick Booth, published in 1997 by Addison-Wesley.
It's about 350 pages, comes with a CD-ROM, and costs around $35.

The book is about performance, and has the subtitle "A Sourcebook For Fast 32-bit Software
Development". It covers areas like searching and sorting, JPEG compression, matrix
multiplication, and random numbers. The book has alot of information about assembly
language tricks, and also about tuning performance of C code.

It'svery much a"hands on" book, and a good source of information if you are interested in
pulling out al the stops to create efficient code.

Notes From ANSI/I SO

String Literal Types

Extern Inlines By Default

Template Compilation Model Part 1

Template Compilation Model Part 2

Function Lookup in Namespaces

Recent Changes to terminate() and unexpected

More on terminate() and unexpected()

Follow-up on Placement New/Delete

Current Draft Standard Now Publicly Available

156

C++ Tutorids

Clarifications on Exception Handling

the ptrdiff t kludge for operator([]

Return Void

Template Default Arguments

Resolution of Template Default Arguments

Resolution of Return Void

State of the C++ Standard

Template Separate Compilation and Specialization

The C++ Standard Library and Reserved Names

The C++ Programming Language - Third Edition

A Sharp Angle On Function Pointers

State of the C++ Standard - It's Donel

Exception Safety in Containers, Part 1

Exception Safety in Containers, Part 2

auto_ptr
C++ and Signal Handling

The Vector Constructor Ambiguity Problem

Removal of Error-Prone Default Arguments

Typename Changes

String Literal Types

Jonathan Schilling, jls@sco.com

[Note: thisisthe first of a series of columns about the details of the ANSI/ISO C++
standardization process. Jonathan Schilling works for SCO in New Jersey and is a member of
the ANSI/ISO C++ committee. Y ou should not assume that features described in this column

157

mailto:jls@sco.com

C++ Tutorids

are availablein your local C++ compiler. Thereis often alag of ayear or more between
feature standardization and that feature showing up in an actual compiler].
At the most recent ANSI/ISO C++ standards meeting in Stockholm in July, amgor change
was made to the type of string literals. Previoudly, string literals were of type char[]; now they
are of type const char].
This repairs alongstanding blemish in C++'s type system. However, it has the potential of
breaking alot of existing code. To lessen the impact, a new standard conversion has been
added to the language, from string literal to char*. (The type of wide string literals has also
changed, and a similar standard conversion has been added for them).
The result is that some old code will continue to work, but some won't. For example:

char* p="abc"; I/ used to compile; still does

char* q=expr ?"abc" : "de"; // used to compile, now an error

void f(char*);
f("abc"); /I used to compile, still does

void g(char*, int);
void g(const char*, long);
g("abc", 7); I/ used to compile, now ambiguous

template <class T> void h(T);

template<> void h<char*>(char*);

h("abc"); // used to call specialization,
/I now calls general template

try {
throw "abc";

catch (char*) {} /' used to catch, now doesn't
The new standard conversion isimmediately deprecated, meaning that it may be removed
from the next revision of the standard. If that happens, the first and third examples above will
become compilation errors as well.
One possibly confusing thing about this new standard conversion isthat it operates upon a
subset of values of atype (literal constants), rather than on al values of atype (which ismore
common). There is precedent, however, in existing standard conversions defined for the null
pointer constant.
If you want to write code that will work under both the old and new rules, you can use just the
new type in some contexts:

const char* p = "abc";

const char* q = expr ?"abc" : "de";
but in some contexts requiring exact type match both types must be specified:

try {
throw "abc";
}

catch (char*) { /* do something */ }
catch (const char*) { /* do the same thing */ }

158

C++ Tutorids

Changing the type of string literalsis a big change in the language, which also introduces a
significant new incompatibility with C. Whether the gain is worth the pain is a matter of
opinion, but the ANSI vote was 80% in favor and the ISO vote was unanimous. It is expected
that compiler vendors will provide a compatibility switch that gives string literals their old

type.

Extern Inlines By Default

Jonathan Schilling, jls@sco.com

In the original C++ language, inline functions always had internal linkage. Then a change was
made to allow the possibility of external linkage. Now a change has been made to make
external linkage the default. This may dter the behavior of some existing code.

The linkage of aglobal inline function doesn't really matter if it isin fact inlined (unless it
contains gtatic local variables; see below), but in real life the inline specifier is sometimes not
honored for one reason or another (see C++ Newsletter #007). When this happens, linkage
matters. Consider the following:

filel.C:
inline int f(int x, int y) {
retun2* x-vy;
}
.. 1(3,5) ...
file2.C:
inline int f(int x, int y) {
retun 3* x-vy;
}
.. 1(3,5) ...

That the two definitions of f() are different may be an accident or may be an intentional (but
probably poor) coding practice. If the compiler doesinline the function calls, the call to f() in
filel will return 1, while the apparently identical call to f() in file2 will return 4. If the
functions are for some reason not inlined, but inline functions have internal linkage, then the
f() callswill still return 1 and 4. This is because the compiler will generate a separate, local
function body in each object file that has acall to the function, using the definition that is
available for that compilation; no language rules violation occurs.
In 1994 the C++ ANSI/ISO committee made a change to the language to allow inline
functions to be declared with the "extern" specifier, giving such functions externa linkage
externinlineint f(int x, inty) { ... }
but the default for global inline functions was still kept as internal. (Inline member functions
get the linkage of the class they are declared in, which usually means external).
The meaning of "extern inline" isthat if calls to afunction are not generated inline, then a
compiler should make just one copy of the definition of the function, to be shared across al

159

mailto:jls@sco.com

C++ Tutorids

object files. For example, if code in more than one object file takes the address of the above
function f() and prints it out, the same address vaue should appear each time. Otherwise,
extern inline functions are like static inline functions: the function definition is compiled
multiple times, once for each source file that callsit.
Implementing this sharing requires additional linker support on some platforms, which may be
part of the reason why "extern inline" is not yet supported in some C++ compilers.
Additionally, this sharing does not dways have to be done; if an inline function does not
contain static local variables or have its address taken, there is no way to tell whether the
definition is shared or not, and acompiler is free to not share it (at the cost of increasing
program size). And there is even some compiler sleight-of-hand that can avoid sharing when
these conditions are present.
But what happens if, asin the original example, an extern inline function that is not inlined has
different definitions in the different places it isused?
In this case, there is aviolation of C++'s One Definition Rule. This means that the program'’s
behavior is considered undefined according to the language standard, but that neither the
compiler nor the linker is required to give adiagnostic message. In practice, this means that,
depending on how the implementation works, the compiler or linker may just silently pick one
of the definitions to be used everywhere. For the above example, both of the calls to f() might
return 1 or both might return 4.
But the 1994 change did not risk altering the meaning of any existing code, because an extern
specifier would have to be added to the source to trigger these new semantics.
However, at the most recent standards meeting in Stockholm in July, a further change was
made to make external linkage the default for non-member inline functions. (The immediate
motivation for this change was a need of the new template compilation model that was
adopted at the same meeting; but more generally it was felt that changing the default was an
idea whose time had come, and the change was approved unanimously in both ANSI and
1SO).
With thislatest change, al non-member inline functions that do not explicitly specify "static"
will become external, and thus it is possible that existing code will now function differently.
To help cope with this, compilers may provide acompatibility option to give inline functions
their old linkage. It is also possible for usersto force the old behavior by use of the
preprocessor
#defineinline static inline
but this only works if there are no member functions declared with "inline", and asa
preprocessor-based solution is not recommended.
Note that change of behavior may occur even when there is a single source definition for a
function. For example, assume that the following function is defined in a header file
somewhere:
file3.h:
inlineint g(int x, int y)
{
#ifndef NDEBUG
cerr<<"I'ming()" << endl;
#endif
if x>=y)
return h(x, y);
else

160

C++ Tutorids

return2* x - y;

}
Even though the source for the function is defined only once, the function can have different
semantics depending upon where it is compiled. For example, in one file NDEBUG might be
defined, but in another not. Or, the call to function h() might be overloaded and resolve
differently in one file from another, depending upon what other functions were visible in each
file. These cases are a so violations of the One Definition Rule, and may lead to a change in
behavior of existing code.
Still another way that existing inline function code can have its behavior altered isif it uses
local static variables. Consider the following function e() defined in a header file:

inlineint &) {

staticinti = 0;
return ++i;

}
When the function previously had internal linkage, there was a separate "i" allocated within
each object file that had a call to e(). But now that the function gets external linkage, thereis
only one copy of &(), and only one "i". Thiswill cause calls to the function to return different
values than before.
The One Definition Rule is aweakness of C++ where software reliability is concerned;
languages with stronger module systems (such as Ada or Java(tm)) do not have these kinds of
problems. As ageneral guideline, global inline functions should operate upon their arguments,
and avoid static variables, interactions with the surrounding context, and the preprocessor.

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is areference to the Java Development Kit.

Template Compilation M odel Part 1

Jonathan Schilling, jls@sco.com

From the time templ ates were first introduced to C++, a problem area has been defining how
templates are compiled at the source level. At the most recent C++ standards meeting in
Stockholm in July, a full specification of this was made for the first time.

The crux of the issue is whether template function definitions (regular functions or member
functions) are compiled separately, or must be visible within the translation units containing
instantiations. Consider first the most basic source arrangement (throughout, .h and .C are

161

mailto:jls@sco.com

C++ Tutorids

used to represent header file and source file extensions, but they may be different on any given
system):
filel.h:
template <class T>
T max(T a T b) {
returna>b?a:b;
}

caler.C:
#include "filel.n"
void c(float x, float y) {
float z = max(x, y);

The template function definition isincluded in the header file that declares the function. This
is the simplest method, and up to now has been the only fully portable method; the original
Standard Template Library implementation used this technique almost exclusively.
However, there is anatural reluctance to have all implementation code in header files, and so
the next simplest arrangement is to move the template definitions to regular source files, and
have the header pull themin:
file2.h:

template <class T> T max(T a, T b);

#include "file2.C"
file2.C:

template <class T>

T max(T a Th){

returna>b?a:b;
}

where caller.C is the same as before (except for including file2.h rather than filel.h). The use
of aregular source file for the template definition here is mostly an illusion, since file2.C is
never compiled by itself but rather as part of the compilation of caler.C. But it does at |east
suggest a separation of interface and implementation.
A variation on this scheme that is used in some compilers permits you to leave out the explicit
#include in the header:
file2a.h:

template <class T> T max(T a, T b);
with file2.C and caller.C the same as before. Here, the compiler implicitly knows by some rule
where to find the corresponding .C file (usually it looks in the same directory asthe .h, fora.C
file with the same base name), and pullsit into the translation unit being compiled. But again,
the .C fileis not itself compiled.
All of these methods belong to the "inclusion” model of template compilation. It is the model
that amost all current C++ compilers provide. It isrelatively ssmple to implement and simple
to understand, but while it has sufficed in practice, there are some serious flaws with it. Most
of these are due to the template definition code getting introduced into the instantiating
context, with unexpected name leakage as aresult. Consider the following example:
file3.h:

template <class T> void f(T);

#include "file3.C"

162

C++ Tutorids

file3.C:
void g(int);
template <class T> void f(T t) {
9(0);

}
caler3.C:
#include "file3.h"
void g(long);
void h() {
f(3.14);
a(1); /1 hijacked!
}
Clearly the writer of caller3.C expected the g(1) call to refer to the g(long) in the same source
file. But instead, the g(int) in file3.C is visible as well, and is a better match on overloading
resolution. While use of namespaces can alleviate some of these problems, similar things can
happen due to macros:
caler3aC:
#define g some_other_name
#include "file3.n"
void h() {
f(3.14);
}

Thistime, the call g(0) in file3.C, which is clearly intended to refer to the g(int) in that file,
gets altered by the macro defined in the context of caller3a.C.

None of these problems would occur if file3.C were separately compiled, because there would
be no possibility of its context and the caller's context becoming intermingled in unexpected
ways. While these kinds of context problems can also occur in inline functions (see C++
Newsletter #015), the potential for damage with templates is much greater, given the centrality
of templates to modern C++ libraries and applications.

A separate compilation model for templates was envisioned as part of the C++ language
template design from the start, but was never specified in any detailed way. The first attempt
to (partially) implement it (Cfront 3.0) ran into difficulties, and subsequently compiler vendors
shied away from it. The first attempts to specify it in the draft ANSI/ISO standard were
criticized as poorly specified, hard to use, and hard to implement efficiently. A series of
contentious discussions and reversals ensued, but now by way of invention and compromise, a
(what is hoped to be) clear and reasonably efficient version of separate compilation has been
made. In addition, the de facto existing "inclusion” model is also permitted by the standard
(but the implicit inclusion method, illustrated by file2a.h above, will not be, unless by vendor
extension).

Template Compilation M odel Part 2

163

C++ Tutorids

Jonathan Schilling, jls@sco.com
In the last issue, we looked at the "inclusion” model of template compilation, which is the one
used by most compilersin practice but which islacking in several respects. As areminder,
here was the example that il lustrated name leakage in the inclusion model:
file3.h:

template <class T> void f(T);

#include "file3.C"
file3.C:

void g(int);

template <class T> void f(T t) {

9(0);
}

caller3.C:
#include "file3.n"
void g(long);
void h() {
f(3.14);
g(2); /I should call g(long), but calls g(int) instead

Now we'll look at the newly-specified template separate compilation model that has recently
been added to the standard. There isn't space here to go into a full description of the new rules,
and in fact the complexity of this subject rapidly approaches infinity! But here are some of the
key highlights:

Names in template functions are divided into those that are

dependent upon the template arguments, and those that are not.

Thisdistinction is made syntactically, making it easier for

people and compilers to understand.

Names in template functions that are not dependent upon the
template arguments are resol ved only in the template definition
context (an example would be g(0) in file3.C above).

Names in template functions that are dependent upon the template
arguments are resolved either in the template instantiation

context (using external names that may be found in object code
symbol tables) or in the template definition context. In the

case of nested or transitive instantiations, no "intermediate
context" isavailable.

Instantiation of template functions is made "position
independent", meaning that if the meaning of a program changes
depending upon where instantiations are placed, program behavior
is undefined.

Instantiations may be performed at either compile- or link-time.
If the choice makes a difference, program behavior is undefined.
Animplementation is alowed to place compilation-order

164

mailto:jls@sco.com

C++ Tutorids

restrictions on separately-compiled templ ates.

Separate compilation of templates is not done by default: the

template declaration or definition must use the new keyword

"export" in order for it to happen. Otherwise theinclusion

method isused. Thiswill provide upward compatibility of

existing template code.
Some of these changes involve the template instantiation model (see C++ Newsletter #010)
more than the templ ate source model, but are necessary to make separate compilation
workable.
Here's the example from above, made into a separately-compiled template:
filed.h:

template <class T> void f(T);
filed.C:

void g(int);

export template <class T> void f(T t) {

9(0);
}

callerd.C:
#include "file4.h"
void g(long);
void h() {
f(3.14);
g(2); /I now, thiscdls g(long); g(int) not visible

In thismodel, file4.C is compiled explicitly, aswell as caller4.C, and its source is not pulled
into the header, explicitly or implicitly. The sourceis otherwise identical to the inclusion
model except for the addition of the "export" keyword. (The meaning of this keyword is
somewhat similar to the existing "extern" keyword, and some people wanted to reuse that
keyword rather than introduce anew one. After some debate, the committee decided at its
recently concluded November meeting not to overload "extern". Also note that the keyword
may be placed on either the template declaration or the template definition; this flexibility may
help library vendors in shipping products that can be used with either template compilation
model).
One area of uncertainty is how much the "no intermediate context" limitation will affect real
code. Here's an example where it matters:
icl.h:

export template <class T>

void g(const T&);
icl.C:

export template <class T>

void g(const T& t)

length(t); // how does length get found?

}
ic2.h:

export template <class T> void f(T);

165

C++ Tutorids

ic2.C:
#include"icl.n"

template <class T>
class Container { ... };

export template <class T>
int length (const Container<T>&) { ...}

export template <class T> void f(T t)

{
Container<T>s;
9(s);
ic3.C:
#include "ic2.h"
classA{ ... };
void m() {
Ag
f(a); /I this starts the instantiations
}

Thisis acase of trangitive instantiation, where m() instantiates f(A) which instantiates
g(Container<A>). Within g(), length(t) is adependent name lookup, so it can find length either
in the definition context (ic1.C) or in the instantiation context (ic3.C). But it'sin neither. It'sin
ic2.C, which is considered "intermediate context". Thus this example would not compile asis,
and would have to be recoded to use the inclusion method (basically, drop the "export™'s and
include the .C'sinto the .h's).

It is an open question how common this kind of intermediate context problem will be. One
analysis found no cases of it in the template-intensive Standard Template Library, which may
be encouraging. As with many of the new inventions of the C++ standardization process, only
time will tell.

Function L ookup in Namespaces

Jonathan Schilling, jls@sco.com

An important change has recently been made in the way functions are found within
namespaces.

The three basic ways of making the contents of a namespace visible were discussed in C++
Newsletters #002 and #004. These are: explicit quaification, using directives, and using
declarations.

166

mailto:jls@sco.com

C++ Tutorids

Consider the following namespace, which declares a class and some
(non-member) functions:

namespace N {
classA{ ... };
A& operator+(const A&, const A&);
void f(A);
void g();
}

Now consider the following function that takes arguments of the class type:
void z(N::A x, N::A'y)

{
x+y. ()
f(x); 11(2)
} g0; 11 (3)

Given the original rules for namespaces (just the three basic methods of namespace visibility),
all three of the statements in this function are compilation errors, because none of the
functions being called are visible.
However the standards committee has changed the way functions are looked up. Now there is
anew language rule, which says that the namespaces of the classes of the arguments, and the
namespaces of the base classes of those classes, are included in the search for function
declarations, even when the contents of those namespaces are not otherwise visible.
So, when looking for an operator+() in (1) above, the arguments are x and y, the class of those
argumentsis A, and A is declared in namespace N. Thus the compiler looks for an operator+()
in N, and finds one, and the call islegal. A ssimilar process happens for the cal to f() in (2).
However, the call to g() in (3) is still acompilation error, because there are no arguments to
direct the lookup. The call would have to be made using one of the basic methods:

N::9(); Il explicit qualification
If the arguments to the function have different types, then al the associated namespaces are
searched. Arguments of built-in types such as int have no associated namespace, while
arguments of more complicated types such as pointers to functions bring in the namespaces of
the pointed-to function's parameters and return type.
This new lookup rule was first added to solve some technica language definition problems
with operator functions. It was then added to solve some other problems with template
"dependent name" lookup (see C++ Newdletter #017) and template friends. At that point it
was felt that consistency demanded the new rule be extended to lookup of al functionsin al
contexts, and this was done (albeit with some dissent within the committee) at the Stockholm
meeting in July.
Because of the staggered introduction of this rule, for awhile you may encounter compilers
that implement it for operator functions but not for other functions, but eventually all
implementations will be in full conformance.
One important thing to note about this rule change isthat it is a step toward making
namespaces a powerful scoping and packaging construct, rather than just atransparent vehicle
to avoid name collisions. The art of employing namespaces is still in its early stages, and first
reports have indicated that the basic methods of making names visible are sometimes too

167

C++ Tutorids

verbose (explicit qualification), too broad (using directives), or too prone to error and
omission (using declarations). The new rule may help alleviate some of these problems.

Recent Changes to terminate() and unexpected()

Jonathan Schilling, jls@sco.com
Earlier in thisissue the basic purposes of the terminate() and unexpected() functions are
described. In the past year the standards committee has made several refinements to these
functions.
The committee has confirmed that direct calls may be made to these functions from
application code. So for instance:

#include <exception>

if (something_is realy wrong)
std::terminate();
This will terminate the program without unwinding the stack and destroying local (and finally
static) objects. Alternatively, if you just throw an exception that doesn't get handled, it is
implementation- dependent whether the stack is unwound before terminate() is called. (M ost
implementations will likely support amode wherein the stack is not unwound, so that you can
debug from the real point of failure).
Probably the main purpose of making direct calls to terminate() and unexpected() will be to
simulate possible error conditions in application testing, especially when the application has
established its own terminate and unexpected handlers.
The committee has changed dlightly the definition of what handlers are used when terminate()
or unexpected() are called. In most cases, they are now the handlersin effect at the time of the
throw, which are not necessarily the current handlers. Usually they are one and the same, but
consider:
#include <exception>

voidul(){ ...}
voidu2() { ... }
classA {
public:
AQ{ -}
A(const A&) { ... std::set_unexpected(u2); }
b
void f() throw(int)
{

168

mailto:jls@sco.com

C++ Tutorids

Ag
throw g I/l which unexpected handler gets called?
}
int main()
{
std::set_unexpected(ul);
f0;
return O;
}

The copy constructor for A is called as part of the throw operation in f(), so by the time the
C++ implementation determines that an unexpected handler needs to be called, u2() isthe
current handler. However, based on this recent change, it is the handler in effect at the time of
the throw - ul() - which gets called. On the other hand, if adirect call to terminate() or
unexpected() is made from the application, it is aways the current handler which gets called.
Some would argue that this kind of rule just adds complexity without much benefit to already-
complex C++ implementations, but others feel that if an application is going to be dynamically
changing its terminate and unexpected handlers, retaining the correct association is important.
In the next issue well talk about another clarification of terminate() and unexpected(), this
time related to the uncaught_exception() library function introduced above.

Moreon terminate() and unexpected()

Jonathan Schilling, jls@sco.com

In C++ Newdletter #019 the terminate handler, the unexpected handler, and the standard
library function uncaught_exception() were introduced.

The standards committee recently decided what values uncaught_exception() should return
when called from these handlers: false from unexpected() and true from terminate().

The latter ruling is somewhat counter-intuitive, because an exception is considered "caught” in
the standard when terminate() is called, so logically uncaught_exception() should return the
inverse. The rationale for the decision was that uncaught_exception() should include the case
where terminate has been called by the implementation. Some committee members argued that
it should return false, or that the va ue should be left undefined. But at the end of the day this
isagood example of the kind of minutiae a standards committee must deal with, because if
you consider that the purpose of uncaught_exception() isto help keep you out of terminate(),
then if you're already in terminate() anyway it pretty much doesn't much matter what it
returns.

Note however that these rules only apply when unexpected() and terminate() are called by the
implementation. When direct user calls are made to these functions (see again Newsletter
#019), uncaught_exception() will return false unless the direct user call was made from code
executing as part of an exception. In the case of terminate() this difference between
implementation calls and direct calls might complicate simulation testing of error conditions.

169

mailto:jls@sco.com

C++ Tutorids

Follow-up on Placement New/Delete

Jonathan Schilling, jls@sco.com
Also introduced in Newsletter #019 were placement new and placement delete. In addition to
the language providing this general cgpability, the C++ standard library also provides a
specific instance for void*:

void* operator new(size t, void*);

void operator delete(void*, void*);
These are accessed by saying:

#include <new>
These functions are defined to do nothing (though new returns its argument). Their purposeis
to alow construction of an object at a specific address, which is often useful in embedded
systems and other low-level applications:

const unsigned long MEMORY _MAP_IO_AREA = 0xf008;

Some _Class* p = new ((void*) MEMORY_MAP_IO_AREA) Some_Class();
Based on afairly recent decision of the standards committee, this definition of placement
new/delete for void* isreserved by the library, and cannot be replaced by the user (unlike the
normal global operator new, which can be). The library also definesasimilar placement
new/delete for dlocating arrays at a specific address.

Current Draft Standard Now Publicly Available

Jonathan Schilling, jls@sco.com
In C++ Newdetter #018 it was mentioned that the C++ standards committee has recently
issued its "second Committee Draft" (CD2) of the standard, with an associated public review
period, but that due to ISO policy the draft would not be available without charge.
ISO has just now reversed this policy, and two Web sites now have information on how to
download the draft and to make public review comments:

http://www.setech.com/x3.html

http://www.maths.warwick.ac.uk/c++/pub/

170

mailto:jls@sco.com
mailto:jls@sco.com
http://www.setech.com/x3.html
http://www.maths.warwick.ac.uk/c++/pub/

C++ Tutorids

The ANSI public review period ends on March 18, so if you're interested in submitting a
comment, better do it quickly!

Clarifications on Exception Handling

Jonathan Schilling, jls@sco.com
The ANSI/ISO C++ standards meeting earlier this month in Nashua, New Hampshire,
produced some clarifications of exception handling semantics.

Oneinteresting case is thisone, which was featured in the January
1997 issue of the magazine C++ Report:

try {
/I exception prone code here, that may do athrow
}

catch (...) {
/I common error code here

try {
throw; // re-throw to more specific handler
}

catch (ExceptA&) {
// handle ExceptA here
}

catch (ExceptB&) {
/[handle ExceptB here
}

catch (...) {
/l handle unknown exceptions here
}

throw;

The idea behind the code is to factor out common error handling logic into the first part of the
catch handler (so as not to replicate it), rethrow the exception to get error handling specific to
the exception in the individual inner handlers, and then finally to rethrow the exception again
to let functions further up the call chain do their handling.

The question is, does this code work as intended? The draft standard speaks of a throw
creating atemporary object that is then deleted when the corresponding handler exits. Does
this mean that when the inner handlers above exit, the rethrow will be of a nonexistent
temporary object? The standard isn't really clear on this, and some existing compilers have
been found to do the deletion at the inner handler, with the result that the program crashes.

171

mailto:jls@sco.com

C++ Tutorids

The answer is that this code should indeed work as intended, and that the existing compilers
for which this does not work are wrong. (Fortunately SCO's new C++ compiler isone of the
onesthat is getting it right!).

Furthermore, the committee stated that the value of the standard library function
uncaught_exception() (see C++ Newsletter #019) changes (from false to true) at both of the
rethrows, until such time as the rethrown exception is caught again.

Another exception handling issue that was clarified is whether base class destructors are called
when a derived class destructor throws an exception:

classB {
public:

~BO{ ..}
|3
classD : public B {
public:

~D() { throw "error"; }
1
void f() {

try {

D d;
}
caich (...){ }

Does ~B() get called aswell as ~D()? The answer isyes. This may seem amost obvious -- it is
part of the general principle of C++ that constructed subobjects always get destroyed if
something goes wrong with the enclosing object -- but in fact there was some debate on this
within the committee.

Finally, one of the comments from the ANSI public review period concerned an area of
exception handling that needed no clarification but is often misunderstood:

try {
throw O;
}

catch (void *) {
/I does the exception get caught here?
}

The handler should not catch the exception, but gpparently in some compilersit does. The
draft standard is clear that throw and catch types either have to match exactly, or be related by
inheritance, or be subject to a pointer-to-pointer standard conversion. Since 0 is not of a
pointer type, the last requirement isn't met, and no handler is found. Similarly note that the
whole range of other standard conversions do not apply, so that for example a handler of type
long does not catch an exception of typeint.

172

C++ Tutorids

the ptrdiff_t kludge for operator(]

Jonathan Schilling, jls@sco.com
Consider the following innocent-looking fragment of a C++ string class:
class String {
public:
String();
char& operator[](unsigned int);
operator const char*();
1
The class has an indexing operator to get at characters of the String, and there's also a
conversion operator to convert the String into a C-level const char* string. A typical usage
might be:
String s,
char c = 4[0];
But there is apotential ambiguity here. Is the expression s[0] equivalent to:
s.operator[](0)
or:
((const char*)s)[0]
The second alternative is more strictly:
(s.operator const char*())[0]
The intuitive answer is the first alternative, and for along time compilers interpreted it as
such. Thiswas relying on a nonstandard weighting of operator[] in overload resolution,
however, and beginning two or three years ago compilers began implementing this according
to the draft ANSI/ISO standard, in which it was ambiguous and an error.
It was ambiguous because the first interpretation involves an exact match (String s, which is
implicitly an argument to the member function) and a (standard) conversion (theliteral O,
which is of int type, to unsigned int), while the second interpretation a so involves an exact
match (int O to the built-in [] operator) and a (user-defined) conversion (the String sto a const
char*). Neither interpretation wins out.
Flagging this ambiguity broke alot of existing code, including commercial library string
classes from Rogue Wave's Tools.h++ and USL C++ Standard Components, as well as
application code.
The ways around this ambiguity were to either (1) add an overloaded operator[](int) to the
class, (2) get rid of the conversion operator, or (3) make all indexing expressions of unsigned
int type.
The first approach isn't great because it adds clutter (for a set of values - negative integers -
rarely used in indexing) but isthe least disruptive remedy. The second approach may be
desirable for other reasons (conversion operators often cause more troubl e than they're worth)
and iswhat was done in the new ANSI/ISO standard library string class, but will likely require
users of existing classes to modify their code. However if you don't have control over the
class's source, the third choice must be taken. Changing the indexing type can be an
improvement in some contexts:
unsigned inti; // not int i
dlil;
but isreal ugly in others:

173

mailto:jls@sco.com

C++ Tutorids

g 0u; /I mot 0]
Since this has been one of the C++ usage problems most commonly reported to compiler
vendors, the ANSI/ISO C++ standards committee tried to improve things a bit last year. It
changed the "pseudo-prototype" of the built-in operator|[] to take a parameter of type ptrdiff_t
(the predefined integer type guaranteed to hold pointer differences, as defined in header
<cstddef>) rather than int.
This has two effects. It provides ptrdiff_t as a unique type that user-defined overloaded
operator[] functions can be written to, so that if you recode the class to use ptrdiff_t asthe
parameter type to operator]]:

char& operator[](ptrdiff_t);
then expressions such as s[0] will no longer be ambiguous. Thisis because the int O will be the
same (either an exact match or astandard conversion) for both interpretations, and thus the
s.operator[](0) interpretation will win out because of its exact match on String s. This does
however have the drawback of making the indexing type signed, which presumably you didn't
want when you made it unsigned int in the first place.
The second effect is that if your system defines ptrdiff_t to be something other than int (such
aslong), §0] will no longer be ambiguous even with the original definition of the class where
the indexing type isunsigned int. Thisis because the (s.operator const char*())[0]
interpretation will involve a second conversion (int O to long).
The committee's action is still something of a kludge, because whether a simple usage
compiles or not suddenly becomes dependent upon how an apparently unrelated system header
type is defined. But it allows more C++ code to behave in an intuitive fashion, and that's
always a good thing.

Return Void

Jonathan Schilling, jls@sco.com
One issue that the C++ standards committee has discussed severa timesis allowing the return
statement to return expressions of type void. An example would be this:

void m();

void n() {
return m();
}

Currently, thisisnot alowed; the proposal is to extend the language to allow areturn
statement to have an expression of void type, within afunction of void return type.
The motivation isto make it easer to write templates. Consider this example, whichin a
different form appears in the new standard library:

template <class T>

TH(T (*pHO) {

.r.éturn pf();

174

mailto:jls@sco.com

C++ Tutorids

}

int g();

void h();

f(9); /I currently allowed

f(h); /[currently an error, proposed to be allowed

Without the extension to the language, atemplate specialization would have to be provided for
the void case:
template<> void f(void (*pf)()) {

(*pfH)0;
return;
}
Once you start playing with extensions involving void, there's atemptation to go further
toward making void afirst-class type. Doing this might ease template writing in other
contexts, but the effort quickly runs into language definitional problems. The argument for this
limited extension isthat it isn't really an introduction of void objects or void arguments, but
rather arealization that the currently allowed:
return ;
already has an implicitly void expression in it.
While this proposal has not yet been formally adopted (the standard is currently in areview
and balloting phase and actual changes to the working paper cannot be made), it received
widespread support at the recent Nashua meeting and is likely to be voted in at the next
meeting this summer.

Template Default Arguments

Jonathan Schilling, jls@sco.com
If you look at the currently available "second Committee Draft" of the proposed standard (see
C++ Newsletter #020), you'll find some very curious wording in Clause 17.3.4.4:

Throughout the C++ Library clauses (17 through 27), whenever a

template member function is declared with one or more default

arguments, thisis to be understood as specifying a set of two or

more overloaded template member functions. The version with the

most parameters defines the interface; the versions with fewer

parameters are to be understood as functions with fewer parameters,

in which the corresponding default argument is substituted in-place.
This "standards rewrite rule" is an example of the last-minute standards patching that goes on
when both alanguage and alibrary are being aggressively designed at the same time, and then

175

mailto:jls@sco.com

C++ Tutorids

somebody discovers that the library depends upon alanguage feature that doesn't exist. Here's
the problem:
classA {
public:
A(); I/ hasadefault constructor
1

Ag

classB {
public:

B(int); // doesn't have a default constructor
1

B b(19);

template <class T>
void f(T t1, Tt2=T()); /I note the default argument

void g() {

f(a, @); /1) ok, both arguments present

f(@; /I 2) ok, second argument defaultsto A::A()

f(b, b); //3)???

f(b); // 4) error, 2nd arg defaults to absent B::B()

}

The issue is when and where dependent default arguments of template functions get
instantiated. Currently they get instantiated in the context of the declaration of the function,
which means that the line 3) call above isan error, because B::B() islooked up and found not
to exist. However significant parts of the new standard library have been written under the
assumption that line 3) will compile, on the grounds that the default argument is not actually
needed, and that only line 4) should cause an error.
So what to do now?
The problem could be worked around in the library by adding overloaded function signatures
(asin the current draft's rewrite rule) or by using an additional intermediate template, but
neither solution is concise or graceful, either for the standard library or for user-written classes
in the yearsto come.
On the other hand modifying the language to not instantiate default arguments unless needed
involves the usual complexities of template instantiations and their context (see C++
Newsletter #016 and #017) and is atricky change to make this late in the standards process.
This inconsistency between language and library arose by mutual confusion and happenstance,
which of course made the discussion about it at the last meeting especially overwrought, with
no consensus reached. The question will probably be decided at the standards meeting next
month, and well let you know what happens.

176

C++ Tutorids

Resolution of Template Default Arguments

Jonathan Schilling, jls@sco.com
In the last issue (#024) we looked at a problem where the draft standard library relied on a
non-existent feature in the draft standard language. This feature was templ ate default
arguments not getting instantiated unless used.
At the meeting of the ANSI/ISO C++ standards committee just concluded in Chiswick,
London, achange to the language was approved that will resolve this discrepancy.
First, to recap the problem:

classB {

public:

B(int); // classdoesn't have a default constructor
1
B b(19);

template <class T>
void f(T t1, Tt2=T()); // function has default argument

void z() {
f(b, b); // used to be error, under new ruleis ok
f(b); // error, both old and new rules

}
Under the old rules, the instantiation of f(b, b) occurred in the context of the definition of the
template function, at which point the default argument value B::B() would be looked up, and
would cause an error because it did not exist.
Under the new rule, adistinction is made between template arguments that depend upon the
template formal parameters and those that don't. This distinction is already made in other
templ ate contexts such as name lookup and separate compilation (see issue #017) so no new
specification wording is needed.
For non-dependent default arguments, name binding and error checking may be done at the
point of function definition (but need not be, in which case it is done at the point of
instantiation). However, for dependent default arguments, name binding and error checking
may only be done when the default argument is needed, that is, when the function is called
without the argument.
Thus, in the above example, the default argument is dependent (since it involves the template
formal parameter T), and so the instantiation of f(b, b) does not cause any error, since the
default argument is not needed. However the instantiation of f(b) would cause an error, since
then the default argument is needed.
For an example of afunction with a non-dependent default argument, consider this addition to
the example:

template <class T>

void g(T t1, char c2 = b);

void y() {
g(b, x); [/l error, old and new rules
}

177

mailto:jls@sco.com

C++ Tutorids

The default argument expression has nothing to do with the template formal parameter T, and
so the error in the default expression (an object of class B cannot be converted to char) must
be given, even though the default argument is not used. This error may be given either at the
point of the definition of g() or at the point of instantiation.

The discussion of this issue in the committee continued to be hotter than it needed to be, but in
the end there was a large majority supporting the language modification. This means that the
library can remain unchanged in its use of template default arguments.

Resolution of Return Void

Jonathan Schilling, jls@sco.com
In C++ Newsdletter #023 we discussed a proposed change to allow return statements to return
expressions of type void. At the standards meeting just concluded, this change was approved.

State of the C++ Standard

Jonathan Schilling, jIs@sco.com

At the meeting of the standards committee, nationa body comments concerning the second
"Committee Draft" of the standard were discussed and, in many cases, addressed by
incorporating changes into the current working paper.

The committee is still on schedule to produce a "Draft International Standard” in December
1997, which despite its name will essentially be the final standard (modulo corrections for
grievoustypos). This would then be subject to formal ballot and approval during 1998.

Template Separate Compilation and Specialization

Jonathan Schilling, jls@sco.com
In C++ Newdetter #017 the new templ ate separate compilation model was described. Sinceits
introduction the ANSI/ISO standards committee has been dealing with sorting out the loose
ends from this addition to the language.
Take the following case, for instance:
filel.h:

template<class T> classA { };

178

mailto:jls@sco.com
mailto:jls@sco.com
mailto:jls@sco.com

C++ Tutorids

template<class T> void f(T);
filel.C:

#include "filel.n"

export template<class T> void f(T) { A<T> a; }
These files introduce atempl ate class, and a template function whose definition depends upon
the template class. The keyword "export" says that the template function definition doesn't
have to be included into translation units that call it; rather it can be separately compiled.
file2.C:

#include "filel.n"

template<> class A<int>{ }; //line2

void g() (f(2); } /l'line3
Line 2 of thisfile declares a specialization (see C++ Newsdetter #012) of the class template for
type int, and then line 3 instantiates the function template for type int, which in turns
instanti ates the class template for type int. But the function template definition in filel.C
cannot see the speciaization in file2.C. So how does this work? Does the specialization not
get used? Or does compilation of filel.C get deferred somehow until the speciaization is
seen?
At the recent standards meeting in London, the committee decided that when an explicit
specialization isnot visible in an instantiation context, yet would affect the instantiation (such
asin this case), the program isill-formed, but that no diagnostic is required.
Thisruling falls into the same general behavior as the One Definition Rule (see C++
Newsletter #015). As such, it makes things easier for compiler implementors but harder for
language users. For instance, the writer of file2.C may not look at the implementation of f(),
and thus may not realize that specialization of class A will cause (possibly silent) undefined
behavior.
Aswe've editorialized before, the One Definition Ruleis aweak area of C++, especially when
compared to languages such as Ada and Java(tm) which stay well-defined across separate
compilation boundaries. The problems mostly result from the use of #include files as the
mechanism for modularity; improving this was something occasionally discussed in C++
standardization circles but never really tackled. Maybe in C++ 0X!

Javaand all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Throughout this document, when the Java
trademark appears alone it is areference to the Java programming language. When the JDK
trademark appears alone it is areference to the Java Development Kit.

The C++ Standard Library and Reserved Names
Jonathan Schilling, jls@sco.com

179

mailto:jls@sco.com

C++ Tutorids

The draft ANSI/ISO C++ standard library incorporates by reference much of the C standard
library. This has always been the case, back to the earliest days of C++; what has changed
during the standardization process is the placement of C standard library namesinto
namespace std, the namespace that a so holds the C++ standard library.
Thus, aproper C++ program now calls the C standard library like this:

#include <cstdio>

std::printf("hello, old library\n");
rather than in either of the ways it used to:
#include <stdio.h>

printf("hello, old library\n™); // explicit scoping
Il or

printf("hello, old library\n"); Il lazy but more typical
The old forms are still accepted by virtue of a deprecated backward compatibility provision,
which states that <stdio.h> has the effect of pulling in <cstdio> and making its std:: names
visible asif there were using decl arations for them.
But what occurs if you have declared your own name in the global namespace, that happens to
be the same as one of the names in the C standard library? That is, something like:

double printf = 3.1416;
Is this well-formed? Does it depend upon whether <cstdio> is present?
Or upon whether <stdio.h> is present?

At the most recent standards meeting in London in July, the committee decided to reserve all
C standard library names for the implementation, in both namespace std and in the global
namespace, regardless of whether any of the headers that define those names are present. So
for example the above declaration of printf would result in undefined behavior.
This decision was made primarily to make C++ compiler and library vendors' lives alittle
easier, since for various reasons putting the C standard library into namespace std has proved
to be amajor headache for them. (Indeed some vendors have tried for several meetings to get
the C standard library taken out of namespace std atogether, but this has been rejected by the
committee).
With a commonly known name such as printf, it's unlikely anyone will declare it themselves.
But there are many names in the C standard library, and it is possible to collide with some of
the more obscure ones. The best advice s this:

Stay out of the global namespace.
That is, all C++ application code should be put into an appropriate namespace (named or
unnamed; see C++ Newsletter issues #001 through #004); then you will never risk collision
with implementation-reserved names or names that come in through system headers (unless
they are macros, against which namespaces offer no protection).

180

C++ Tutorids

The C++ Programming Language - Third Edition

Jonathan Schilling, jls@sco.com
Bjarne Stroustrup, the inventor of C++, has now published "The C++ Programming Language,
Third Edition" (Addison-Wesley, about $43). This is a massive update of his earlier Second
Edition, incorporating all of the ANSI/ISO changes to the C++ language and library.
Asinthe past, thisbook is not the gentlest introduction to the language, but is aimed for the
able programmer. It retains the strength of the previous editions in emphasizing design
considerations as well aslanguage details. The new standard library is well covered, as are the
motivations for using the new language features. Each chapter concludes with a concise
"Advice" section that give helpful rules of thumb for language and library users. For example
the recommendation above is given on p. 194 as

Place every nonlocal name, except main(), in some namespace.
The book is quite large (900 pages), but then C++ isnow abig language. It was not proofread
aswell asit might have been, so it isa good ideato print out the Errata at
http://www.awl.com/cp/stroustrup3e. The Errata al so include clarifications and updates due to
late changes in the standardization process.

A Sharp Angle On Function Pointers

Jonathan Schilling, jls@sco.com
At the summer 1996 ANSI/ISO standards meeting, the concept of language linkage was
extended to cover pointer to function types, such that there are now pointers to C functions
and pointers to C++ functions as distinct types. This change was described in C++ Newdletter
issue #021, "A New Angle on Function Pointers".
Now that this feature is being introduced into compilers, such as SCO's new C++ compiler, we
are seeing how it can break existing code.
Consider first this usage:
something.h:
extern "C" {
void f(int);
}

something.C:
#include "something.h"

void f(int) { ... }
where both header and source file are compiled with C++ (that is, thisis a C++ function that
you want to be callable from C as well).
The definition in the source file does not have extern "C" on it, but because it is the same f(int)
asin the declaration in the header, the language rules state that the extern "C" from the
declaration appliesto it as well. The definition for f is thus generated with C linkage, that is,
with the unmangled name "f".

181

mailto:jls@sco.com
http://www.awl.com/cp/stroustrup3e.
mailto:jls@sco.com

C++ Tutorids

Now suppose we do the same thing, but with a pointer to function as a parameter:
something.h:
extern "C" {

void g(int (*pf)());
}

something.C:
#include "something.h"

void g(int *pfH)() { ...}
Under the old language rules, the definition of g would get its language linkage from the
declaration of g, and thus would be generated with C linkage and the unmangled name "g",
just as in the case above. But under the new language rule, g is generated with C++ linkage
and amangled name such as"g__ FPFv_i", and alink-time error will likely result.
Why does this happen? Because now the language linkage applies not only to the function it is
specified for, but also to any other names or declarators introduced by the declaration of that
function. In this case this means the linkage applies to the pointer-to-function pf.
So the declaration of g iswithin an extern "C" block, which means that its pf is considered a
pointer to a C function. However the definition of g is not within an extern "C" block, which
means that its pf is considered a pointer to a C++ function. Thus the parameters are of
different types, thus the two g's are considered different and overloaded rather than the same
function, thus the extern "C" on the first g does not extend to the second, and thus g is
generated with C++ linkage and a mangled name.
There are two ways the code can be revised to work properly. Thefirst isto put the definition
into an extern "C" block aswell:

something.C:
extern "C" {

void g(int *pf)() { ... }

Thisworks because the definition's pf will now also be interpreted as a pointer to C function,
and so the two g's are the same.
The second approach isto use atypedef for the pointer to function:
something.h:
extern "C" {
typedef int (*pf)();
void g(pf);
}

something.C:
voidg(pf) { ...}
This works because the typedef preserves the "pointer to C" characteristic of the type when pf
appears again in the definition of g.
Either of these approaches will also work properly with compilers implementing the old
language rules.

182

C++ Tutorids

State of the C++ Standard - It's Donel

Jonathan Schilling, jls@sco.com

The ANSI/ISO standards meeting that was held earlier this month in Morristown, New Jersey
finally completed the C++ standard. Procedurally, this means that the Final Draft International
Standard was produced and approved at this meeting, and will be forwarded on to the various
national bodies for approval as an International Standard, with no further changes allowed.
Thisfinal ratification is expected by March 1998, and the standard will become officially
official some time after that. But in terms of the wording of the standard, it's done now.

The standard has taken eight years and a cast of hundreds to develop. It is significant to note
that at the Morristown meeting the vote to approve the standard was unanimous, both within
ANSI and ISO. Furthermore, dl of the major objections that had been raised by countries that
voted "No with comments” or "Y eswith comments" on the CD2 ballot (see C++ Newsletter
#018) have now been resolved to the satisfaction of the national bodies involved.

In other words, thisis a great moment for the C++ world. We will now have one dialect of the
language and library instead of many; applications will be able to be written in a portable way,
and compiler and library vendors will be able to spend more resources on quality of
implementation issues. The new abstraction mechanisms introduced by the standard (such as
generic programming and the STL) will now become available to all of the estimated 1.5
million C++ programmers worldwide.

A press rel ease on the completion of the standard can be found at:

http://www.research.att.com/~bs/iso release.html

Exception Safety in Containers, Part 1

Jonathan Schilling, jls@sco.com

One of the best improvements made in the standard happened at the last two meetingsin
London and Morristown. Thisis the requirement that library containers (that is, the STL)
behave in an "exception safe” manner if an exception is thrown during a container operation.
(Typically such exceptions might come from a failed new or from a copy constructor for the
contained object). Prior to these changes, if an exception was thrown, all bets were off, and as
a consequence the library didn't work well with the language's recommended way of reporting
error conditions.

What does "exception safe" mean? Basically there are three level s of guarantees:

1. Certain operations will do nothing if an exception is thrown during the operation.

183

mailto:jls@sco.com
http://www.research.att.com/~bs/iso_release.html
mailto:jls@sco.com

C++ Tutorids

2. Other operations do not have that guarantee, but at least will not leak memory, fail to
destruct constructed objects, or behave in an undefined manner upon destruction of the
container.

3. Destructors in the library are guaranteed not to throw an exception.

Thefirst level of guarantee can be thought of as "commit or rollback" semantics. For example,
if you insert an object into alist, you can know that if the insertion is successful the list will
now contain that object, or if it is unsuccessful the list will remain unchanged.

The second level of guarantee is weaker than that. It simply states that the contents of the
container are undefined, but the program will still behave reasonably otherwise. Thus, for
example, if an insertion into a vector is unsuccessful, you will still have aworking,
destructible vector, but its contents are unknown -- it might be unchanged from before the
operation, or it might be empty, or anywhere in between.

The third guarantee is simply to ensure sane behavior of the library.
As ageneral rule, no destructor should ever throw an exception!

The rationale for the difference between the two levels of guarantees is based on how the
different STL containers are implemented and the difficulty of supporting the guarantees; this
and other details of exception safety in containers will be discussed in more detail in the next
issue.

Exception Safety in Containers, Part 2

Jonathan Schilling, jls@sco.com

In the previous issue we mentioned that one of the best improvements made to the standard
over the last two meetings has been the requirement that standard library containers exhibit
certain levels of exception safety.

Here's an example of what that means, using lists and vectors (C++
Newsletter #015):

#include <iostream>
#include <list>

using namespace std;
classA {
public:

A(inti){ n=1;}
#if CCTOR

184

mailto:jls@sco.com

C++ Tutorids

A(const A& a) {
if (an<6)
n=an;
else
throw "too large";
}
#endif
int get() const { return n; }
private:
int n;
|3

int main() {
list<A> lg;
la.push_back(A(0)); la.push_back(A(1));

typedef list<A>::iterator LI;

try {
for (inti=2;i < 10; i++){
LI li =labegin(); li++;
lainsert(li, A(i));
}
} catch (const char* s) { }

/l what does |a contain now?
for (L1 1 =labegin(); i '=laend(); i++)
cout << i->get();
cout << endl;
}
Thelist initially has two elements, and then we insert a series of elements before the second
element position. When compiled without any user-supplied copy constructor, the output is:
0987654321
What happens when we compile with CCTOR defined? We have supplied a copy constructor
which throws an exception for element 6. This copy constructor is called by the library
container implementation when elements are copied into the container. What is the state of the
container when the copy construction for element 6 throws an exception?
Prior to the recent changes to the standard, the results of this were completely undefined. After
the exception was caught the list might be intact or not; the iterator operations on it might
work or not; there might be fewer or no elements still in the list; or the destruction of the list
object at the end of main() might cause a core dump.
However, now the standard states that the insert() operation that causes the throw will have no
effect, and guarantees that the output will be:
054321
which iswhat it was before the insert() that threw began. In other words, list insert is done
with "commit or rollback™ semantics.

185

C++ Tutorids

Now, let's take the above example and use a vector rather than alist. (This can be done by
simply editing the three text occurrences of "list" to "vector").
Without the copy constructor, we get the same output as for list:

0987654321
But with the copy constructor included via defining CCTOR, we get:

0543211
which lookslike a "wrong" value (there's an extra 1). What happened?
Remember in the previous issue we talked about two levels of guarantees in terms of
exception safety in containers. The stronger level isthe commit-or-rollback level, and is
required for most operations on lists, maps, and sets. The weaker level doesn't guarantee the
contents of the container, but does guarantee that the container will be well-formed (for
example, you can iterate through it and destruct it). Thisweaker level isall that isrequired of
most operations on vectors and deques.
The basic rationale for the difference is to permit efficient implementation. The first group of
containers are typically "node- based", meaning elements of a container are allocated in
separate nodes that are linked together, while the second group of containers are "array-
based", meaning elements of a container are allocated in contiguous storage. It's alot easier to
provide commit-or-rolIback semantics on node-based containers than array-based ones; hence
the two levels of guarantees.
So, while the above example for vectors is guaranteed to execute to completion, there's no way
of knowing what the output will be. (The "0543211" output comes from the Silicon Graphics
free STL, and looks to be the result of a partia resizing or copying operation; another STL
implementation might produce an entirely different result).
There are some specia cases to the general description of the two levels of guarantees above.
For instance: multiple element insertion operations on maps and sets do not have the first level
guarantee. Insertions of PODs - plain old C-level structs - for vectors and deques do have it.
Stacks and queues have it as well. Thus for complete details you'll have to check the standard
or areference book.
In conclusion, the basic benefit of all thisisthat if you have classes that use exception
handling, you can put them into standard library containers and get reasonable and useful
behavior in the event an exception is thrown.

auto_ptr

Jonathan Schilling, jls@sco.com
This newsletter has not yet mentioned the auto_ptr class found in the new standard library.
This template class provides a simple form of local, exception-safe, dynamic memory
allocation. Its design has undergone some changes during the standardization process, but is
now final.
To understand the purpose of auto_ptr, first consider this code:

class SomeClass{ ... void foo(); ... };

186

mailto:jls@sco.com

C++ Tutorids

void f() {
SomeClass* p = new SomeClass();
p->foo();

Calling function f() causes a memory leak, because the storage acquired by the new operator is
never rel eased and the destructor for SomeClass (which may itself release other acquired
storage or resources within SomeClass) is never called.

Even if the coding of f() is changed to:

void f() {
SomeClass* p = new SomeClass();
p->foo();
delete p;

}

the function may still leak, because if an exception is thrown out of the call to foo(), the delete
statement will never execute.
There are several approaches to getting around thistype of problem but the one that best
preserves the structure of the code is to use the standard library's auto_ptr class, like this:
#include <memory>
using namespace std;

void f() {
auto_ptr<SomeClass> p(new SomeClasy)));
p->foo();

}

auto_ptr is atemplate class that is instantiated with the class being pointed to as its argument
type. Objects of the auto_ptr class are initialized by aregular pointer to the class being pointed
to. Once created, auto_ptr objects are used just like aregular pointer: that is, the * and ->
operations are defined for auto_ptr objects, with practically no additional overhead over their
built-in versions.

But most importantly, it is not necessary to write a delete statement to correspond to the new
operator above; rather, as part of the destruction of the auto_ptr object at the end of its scope
(function f(), in this case), the memory acquired by the new will be deleted, and the
SomeClass destructor will be called. And since destructors are called for local objects when
exceptions are thrown and the stack is unwound (see C++ Newsletter #017), the same will
happen if an exception is thrown by the call to foo().

In addition, the auto_ptr class has amember function get() which allows you to get a the
original regular pointer, and member functions release() and reset() which allow you to
explicitly deassociate or delete the original pointer. These are less often used, however.

The design changesin auto_ptr have come from deciding whether to allow auto_ptr objects to
be copy constructed or assigned. In particular, the former is necessary if auto_ptr objects are to
be passed to or returned from functions. From the first public Committee Draft to the second
Draft to the final Draft International Standard, this part of auto_ptr has changed, and so what
may be in the standard library implementation you are currently using may not yet correspond
to the final version of the library adopted by the committee at the Morristown meeting this
past November.

187

C++ Tutorids

In the final version, copy construction and assignment of auto_ptr objectsis allowed, but only
on non-const objects. Copying an auto_ptr transfers "ownership” of the storage pointed to by
the auto_ptr to the destination, and the source of the copy is modified so that its pointer is null.
Thus, in the following case:
void g(auto_ptr<SomeClass> p) {
p->foo(); // ok

}

void f() {
auto_ptr<SomeClass> p(new SomeClasy));
9(p);
p->foo(); // runtime error

}

the call to foo() in g() will work properly, but the one in f() would cause runtime undefined
behavior (such as a core dump) because it would be a dereference of a null pointer. These
"destructive copy semantics" are of course different from normal pointer copying semantics
(where both the destination and source point to the same storage) and are the reason why only
non-const objects may be used.

Because of these transfer of ownership semantics, it is generally not possible to use auto_ptr
objects within collections, such as STL. Thisis because the agorithms that implement STL
may create temporary copies (for example, during a sort) that unexpectedly gain ownership of
the auto_ptr, causing very unpredictable results in the container.

Y ou may have seen "smart pointer" classes elsewhere which present alternative interfaces,
semantics, and implementations. It'simportant to realize that the standard library auto_ptr
classisNOT ageneralized, adl-purpose smart pointer class, nor isit asubstitute for garbage
collection. Rather, it is designed for one specific purpose, and the "auto" part of the auto_ptr
name should be considered suggestive: use auto_ptr for local (automatic) variables and
temporaries only.

C++ and Signal Handling

Jonathan Schilling, jls@sco.com

In C++ Newsdletter issue #015 it was mentioned that C++ exceptions are not related to
operating system signals. In other words, if an operating system signal occurs (such as an
attempt to reference an invalid address, or an interrupt keystroke from the termina running the
program), it will not be mapped into a C++ exception; rather, the signal will haveto be
handled by the techniques described in the C standard library, which isincluded by reference
into the C++ standard library. These C standard library techniques are defined by the
<signal.h> header (which becomes header <csignal> in the C++ standard library).

A call to the signal () function defines asignal handler function to be given control in the event
aparticular signal israised. The C standard constrains the behavior of this handler function in

188

mailto:jls@sco.com

C++ Tutorids

anumber of respects -- it can only terminate in certain ways, it usually can't call other standard
library functions, it can't refer to static objects unless they are of type volatile sig_atomic _t,
and so forth (see Section 7.7.1.1 of the ISO C standard for full details). Any violation of these
constraints results in undefined behavior.

This|eft open the question of what constraints a C++ signal handling function has. The
standards committee resolved this during the past year by adding language to the standard
defining the concept of a "plain old function” (POF), analogous to the existing concept of
plain old data (POD). A POF is a function that only uses the common subset of the C and C++
languages. A C++ signal handler only has defined behavior if it isaPOF and if it would have
defined behavior under the C standard; in particular, any handler which isnot aPOF -- i.e.,
which uses any C++ features -- will have undefined behavior.

This means that even innocuous uses of C++ language features, such as "for (inti ...)" instead
of "for (i ...)", in asignal handler will result in undefined behavior, even when in
implementation terms it should make no difference.

That's the letter of the law. In practice, things are different.

First, the C standard is not really the arbiter of signal handlers. Typically operating systems
provide more full-featured, robust signal handling mechanisms than the bare-bones level of
portable support given by the C standard. Similarly, the constraints upon signal handlersin
operating systems may be different. For instance, the POSIX standard has a more specific and
generally less restrictive set of constraints upon signal handlers than the C standard. It isthis
operating system definition or standard that then often becomes the important one for
programmers to be aware of .

Second, alot of C++ features do not impact the runtime considerations of what would
interfere with signal handling. Examples would include interspersing of declarations with
statements, use of references, use of scoping notation (assuming the scope reference itself was
well-defined), and many others. Such innocuous usages, while strictly speaking undefined by
the C++ standard, are very likely to work without problems.

The C++ features that are not likely to work are those that involve complicated runtime
processing or state information. In particular, any use of C++ exception handling within a
signal handler islikely to lead to disaster (and indeed a footnote in the standard points this
out), unless the implementation documentation has specificaly stated that it will work.
Similarly, runtime type information (RTTI) and static object declaration with dynamic
initialization are good candidates for mal function.

Note the C++ standard does not say that use of C++ featuresin signal handlersis
"implementation-defined”, in which case implementations would have to document which
features will or will not work in asignal handler, but rather "undefined”, which lets C++
vendors off the hook. It is up to the user of an implementation to figure out whether a
particular C++ feature can safely operate in asigna handler, hopefully with some general
guidance from the vendor. Of course, the safest route is to follow the letter of the law and
comply with the C standard restrictions by avoiding C++ features entirely.

189

C++ Tutorids

The Vector Constructor Ambiguity Problem
Jonathan Schilling, jls@sco.com

The vector container of the C++ standard library was introduced in C++
Newsletter issue #015. From itsinception in the original Standard
Template Library specification, a declaration such as

vector<int>v(100, 1);
meant "construct a vector of 100 integers, all initialized to 1".
Then later, a member template constructor was added, so that you could construct a vector
from a copy of another container, given the beginning and ending of an input iterator range. A
typica usage would be:

list<int> li;

vector<int> v2(li.begin(), li.end());
However it turns out that adding the declaration for this member templ ate overloads the
original declaration. This can be seen from this example (simplified from the real vector
class):

#include <stdio.h>

template <class T>
class vector {
public:
typedef unsigned int size_type;
vector(size type, T) { printf("ctor 1\n"); }
template<class 1> vector(ll first, 11 last)
{ printf("ctor 2\n"); }

b

int main() {
vector<int>v(100, 1); // expecting ctorl
return O;

}

This program prints out "ctor 2", because that is the better match (the first constructor requires
atype conversion), but it is certainly not what the user intended! Other usages can lead to
compile-time ambiguities, usually with fairly incomprehensible error messages.
Now one way to work around the problem in this instance would be to ssmply insert a cast to
the actual type in the first constructor:

vector<int> v((vector<int>::size type)100, 1);
With this change the above program prints out "ctor 1", since that is now the better match.
But thisisnon-intuitive, and furthermore the ANSI/ISO standards committee discovered that
this problem also occurs in other sequence containers in the standard library, such aslist,
deque, and basic_string, and in other member functions, such as insert() and replace(),
whenever atemplate argument type convertible to int was involved. So a better resolution was
needed.

190

mailto:jls@sco.com

C++ Tutorids

The solution adopted by the committee last year was simply to declare that the second
constructor shall have the effect of thefirst constructor, if the input iterator type (class |l in the
above example) is an integrd type! In other words, the library will "do what | mean”, not "do
what | say".

How is this donein the library? One way is to specialize the member template for every
integral type. But the standard also mysteriously states that "L ess cumbersome implementation
technigques also exist". Thisisreferring to implementing a compile-time dispatching scheme
inside the library, whereby the implementation can tell whether the instantiating type of the
second constructor isintegral or not. Thisinvolves clever uses of partial specialization and the
numeric_limits<T> traits class. Bjarne Stroustrup stated during a committee meeting that
people who ook at the code for this technique react with “fascinated horror", but fortunately
the horror is for standard library vendors and not you!

Meanwhile, if you do not have access to a standard library implementation that conforms to
the final standard, you may have to use awork-around such as presented above.

Removal of Error-Prone Default Arguments

Jonathan Schilling, jls@sco.com
Say you're using a not-quite-up-to-date version of the C++ standard library and you see this
code:

vector<int> v(22);

v.assign(7);
Without having to get out your nearest STL book, what would you think the second statement
does?
A reasonable guess might be "assign 7 to every element of v". But that would be wrong. The
old definition of this assign member function was essentialy:

void vector<T>::assign(size typen,const T& t=T()) {

erase(begin(), end());
insert(begin(), n, t);

}
So what the above code would really do is replace the existing vector with avector of 7
elements, each of value zero. The zero comes from the default argument T(), which isint() in
this case, which means a zero-initialized value.
This usage of adefault argument in the library's specification was deemed “error-prone” by the
ANSI/ISO C++ standards committee and was removed from the then-draft standard last year.
So now, the assign member function is essentially;

void vector<T>::assign(size typen, const T& t);
and a usage such as the above would have to be of the form:

v.assign(7, 0); / assign vector of 7 elements, each zero
which is similar in gppearance to the commonly-used constructor form:

vector<int>v2(7, x); /I construct vector of 7 elements, each x

191

mailto:jls@sco.com

C++ Tutorids

so that the possibility of misunderstanding is much lesslikely.

The committee also removed similarly error-prone default arguments for the insert() member
function and in the deque, list, and string classes.

In part this review of the standard was motivated by problems rel ated to whether default
argument expressions are instantiated if not used (see C++ Newdletters #024 and #025). But
thisissue also illustrates a more general design point that is pertinent to your programming as
well: be judicious with default arguments, and take care to see whether function calls that omit
the default arguments might get misinterpreted by human readers.

Typename Changes

Jonathan Schilling, jls@sco.com
This newdletter has not previously mentioned the "typename" keyword. This language feature
was introduced several years ago during the standardization process. To understand its
purpose, consider the following code:
template<class T> class Y {
T:A g /I error
}:

When the compiler sees this class template definition, it has no way of knowing what T::A
represents. In particular, it doesn't know whether T::A isatype or is something else. Usages
such as
T::A(bb);
might either be afunction call of T::A passing global variable bb as an argument, or a
declaration of avariable bb of type T::A. (Yes, in C and C++ you can declare variables that
way; makes parsing lots of fun!)
Issue #017 of the Newsletter discussed the idea of dependent and non-dependent names within
templates. T::A is adependent name (because part of the name is the templ ate formal
parameter T), and the language rule became that a dependent name within atemplateis
assumed to NOT be atype unless the applicable name lookup finds atype (which it doesn't
here) or unless the new typename keyword is used. Neither of these hgppensin this case.
S0, the above examples need to be modified to
template<class T> class Y {
typename T::A g /I ok
typename T::A(bb); // ok, bb is adatamember
b
and all iswell.
Since typename was introduced, its permitted use has been expanded a couple of times to
make template writing easier. A while ago, the language was changed to alow typename to
appear before any qualified name, even if the name isn't template dependent, as long as the
usage is within the scope of atemplate declaration or definition.

192

mailto:jls@sco.com

C++ Tutorids

More recently, at the last committee meeting before the standard was made final, the language
syntax was revised to alow typename to be used within areturn statement. This makes the
following usage possible:
classV {
public:
typedef int weight;
...
b

classW {

public:
typedef int weight;
...

|3

template <class T>
classA {
public:
typename T::weight f() {
return typename T::weight(); // now allowed

}
...
h

void z() {
A<V> g
af();
}
The first use of typename corresponds to what we've discussed above. But without also having
typename in the return statement, the compiler would have to assume that that T::weight
(being a dependent name) was a function name rather than atype, and so would generate an
error.
As atemporary source of confusion, some compilers have not yet implemented all of the
conseguences of dependent/non-dependent lookups in templates, and so this example might
compile even without the typename. Also note that as a non-standard extension some
compilerswill assume an implicit typename in the example at the beginning, causing it to
compile without atypename.
More importantly, the above example is the sort of architecture you seein STL or generic
programming, where several classes share the same characteristic (in this case, atype named
"weight"), and you can make use of that characteristic without knowing which of those classes
you're being instantiated with. It isin such circumstances that the typename keyword is most
likely to be necessary.

193

C++ Tutorids

Object-oriented Design

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 1- ABSTRACTION

Up until now we've largely avoided discussing object-oriented design (OOD). Thisisatopic
with avariety of methods put forward, and people tend to have strong views about it. But there
are some useful general principles that can be stated, and we will present some of them in a
series of articles.
Thefirst point is perhaps the hardest one for newcomers to OOD to grasp. People will ask
"How can | decide what classes my program should have init?' The fundamental ruleisthat a
class should represent some abstraction. For example, a Date class might represent calendar
dates, an Integer class might deal with integers, and aMatrix class would represent
mathematical matrices. So you need to ask "What kinds of entities does my application
manipul ate?"
Some examples of potential classes in different application areas would include:
GUI/Graphics - Line, Circle, Window, TextArea, Button, Point

Statistics - Mean, ChiSquare, Correlation

Geography - River, Country, Sea, Continent
Another way of saying it would be this. Instead of viewing an application as something that
performs steps A, B, and C, that is, looking at the program in terms of its functions, instead
ask what types of objects and data the application manipulates. Instead of taking a function-
oriented approach, take an object-oriented one.
One obvious question with identifying potential classes iswhat level of granularity to apply.
For example, in C++ an "int" isa primitive type, that represents an abstraction of
mathematical integers. Should int be a classin the usual C++ sense? Probably not, because a
class implies certain kinds of overhead in speed and space and in user comprehension. It's
interesting to note that Java(tm), a newer object-oriented language, also hasint, but
additionally supports a "wrapper" class called Integer that represents an integer value. In this
way, an application can manipulate integers either as primitives or as classes.
Consider a dightly more ambiguous case. Suppose that you're writing a Date class, and you
want to express the concept "day of week". Should this be a class of its own? Besides devising
aclass for this purpose, at least five other representations are possible:

int dow : 3; (bit field)

char dow;

short dow;

int dow;

enum Dow { SUN, MON, TUE, WED, THU, FRI, SAT};

The "right" choice in this case is probably the enumeration. It's a natural way of representing a
limited domain of values

194

C++ Tutorids

Direct use of primitive types for representation hasits drawbacks. For example, if | choose to
represent day of week as an integer, then what is meant by:
int dow;

dow = 19;
The domain of the typeis violated. As another example, C/C++ pointers are notorious for
being misused and thereby introducing bugs into programs. A better choice in many casesisa
higher-level abstraction like a string class, found in the C++ and Java standard libraries.
On the other end of the scale, it's also possible to have a class try to do too much, or to cover
several disparate abstractions. For example, in statistics, it doesn't make sense to mix Mean
and Correlation. These statistical methods have little in common. If you have aclass
"Statistics' with both of thesein it, along with an add() member function to add new values,
the result will be a mishmash. For example, for Mean, you need a stream of single values,
whereas for Correlation, you need a sequence of (X,Y) pairs.
We will have more to say about OOD principles. A good book illustrating several object-
oriented design principlesis "Designing and Coding Reusable C++" by Martin Carroll and
Margaret Ellis, published by Addison-Wesley.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 2 - DATA
ABSTRACTION

Aswe said in the previous issue, object-oriented design has many aspectsto it, and a variety
of strong views about which approach is "right”. But there are some general techniques that
are useful.
One of these, one that constitutes a whole design method in itself, is data abstraction. Simply
stated, data abstraction refersto identifying key datatypes in an application, along with
operations that are to be done on those types.
What does this mean in practice? Suppose that we are doing graphics of some sort, and are
concerned with X,Y points on a screen. Now, at alow enough level, a point might be
described via acouple of floating-point numbers X and Y. But with data abstraction, we
define atype "Point" that will refer to a point, and we hide from the users of the type just how
such apoint isimplemented. Instead of directly using X,Y values, we present Point asa
distinct data type, along with some operations on it.
In the case of a Point type, two of those operations are (1) establishing anew Point instance,
that describes an actual screen point, and (2) computing the distance between this point and
another point.
If Point waswritten out as a C++ class, it might look like:
class Point {
float x;
floaty;
public:
Point(float, float);
float dist(const Point&);

h

195

C++ Tutorids

We've declared a class Point with a couple of private data members. There is a constructor to
create new object instances of Point, and a member function dist() to compute the distance
between this point and another one.
Suppose that we instead implemented this as C code. We might have:
struct Point {
float x;
floaty;

b
typedef struct Point Point;

float Point_dist(Point*);
and so on.
The C gpproach will certainly work, so why all the fuss about data abstraction and C++? There
are several reasons for the fuss. Oneis simply that data abstraction is a useful way of looking
at the organization of a software program. Rather than decomposing a program in terms of its
functional structure, we instead ask the question "What data types are we operating on, and
what sorts of operations do we wish to do on them?"
With data abstraction, there is a distinction made between the representation of atype, and
public operations on and behavior of that type. For example, | as a user of Point don't have to
know or care that internally, apoint is represented by a couple of floating-point numbers.
Other choices might conceivably be doubles or longs or shorts. All | care about is the public
behavior of the type.
In asimilar vein, data abstraction allows for the formal manipulation of typesin a
mathematical sense. For example, suppose that we are dealing with screen pointsin the range
0-1000, typical of windowing systems today. And we are using the C approach, and say:
Point p;

p.x = 125;

p.y =-59;
What does this mean? The domain of the type has been violated, by introduction of an invalid
valuefor Y. This sort of invalid value can easily be screened out in a C++ constructor for
Point. Without maintaining integrity of atype, it's hard to reason about the behavior of the
type, for example, whether dist() really does compute the distance appropriately.
Also, if the representation of atypeishidden, it can be changed at alater time without
affecting the users of the type.
As another simple example of data abstraction, consider designing a String class. In C, strings
are implemented simply as character pointers, that is, of type "char*". Such pointers tend to be
error prone, and we might desire ahigher-level alternative.
In terms of the actual string representation, we obviously have to store the string's characters,
and we also might want to store the string length separately from the actual characters.
Some of the operations on strings that we might want would include:

- creating a String from a char*

- creating a String from another String

- retrieving a character at a given index

196

C++ Tutorids

- retrieving the length

- searching for a pattern in a String
Given thisvery rough ideafor adatatype, we could write C++ code like so:
class String {
char* str;
int len;
public:
String(const char*);
String(const String&);
char charAt(int) const;
int length() const;
int search(const String&) const;
|3
and so on.
In medium-complexity applications, data abstraction can be used as a design technique by
itself, building up a set of abstract types that can be used to structure a complete program. It
can also be used as part of other design techniques. For example, in some application | might
have a calendar date type, used to store the birthdate of a person in a personnel record. Data
abstraction could be used to devise a Date type, independent of any other design techniques
used in the application.
Thereis an excellent (but out of print) book on data abstraction, with the title " Abstraction and
Specification in Program Development”, by Barbara L iskov and John Guttag (published 1986
by MIT Press). Note also that data abstraction is only one part of object-oriented design and
programming. Some languages (Modula-2, Ada 83) support data abstraction without being
fully object-oriented.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 3-POLYMORPHISM

The example in the previous section illustrates another aspect of object-oriented design, that of
polymorphism. This term means "many forms", and in the context that we are using refersto
the ability to call member functions of many object types using the same interface.
The simplest C++ example of thiswould be:

#include <iostream.h>

classA {

public:
virtual void f() { cout << "A::f" << endl;}
b

classB : public A {
public:

virtual void f() { cout << "B::f" << endl;}
b

int main()

197

C++ Tutorids

{
B b;
A* ap = &b;
ap->f();
return O;

}

which calls B::f(). That is, the base class pointer ap "really" points at aB object, and so B::f()
iscalled.

This feature requires some run-time assistance to determine which type of object isreally
being manipulated, and which f() to call. One implementation approach uses a hidden pointer
in each object instance, that points at a table of function pointers (avirtual table or vtbl), and
dispatches accordingly.

Without language support for polymorphism, one would have to say something like:
#include <iostream.h>

classA {
public:
int type;
A() {type =1}
void f() { cout << "A::f" << endl;}

b
classB : public A {
public:
B() {type=2;}
void f() { cout << "B::f" << endl;}
1
int main()
{
B b;
A* ap=&b;
if (ap->type==1)
ap->f();
else
((B*)ap)->f();
return O;
}

that is, use an explicit type field. Thisis cumbersome.
The use of base/derived classes (superclasses and subclasses) in combination with
polymorphic functions goes by the technical name of "object-oriented programming".

198

C++ Tutorids

It's interesting to note that in Java, methods (functions) are by default polymorphic, and one
has to specifically disable this feature by use of the "final", "private", or "static" keywords. In
C++ the default goes the other way.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 4 - DATA HIDING

Another quite basic principle of object-oriented design is to avoid exposing the private state of
an object to the world. Earlier we talked about data abstraction, where a user-defined typeis
composed of data and operations on that data. For example, in C++ atype Date might
represent a user-defined type for calendar dates, and operations would include comparing
dates for equality, computing the number of days between two dates, and so on.
Suppose that in C++, a Date type looks like this:
class Date {
public:
int m; // month 1-12
intd; // day 1-31
inty; /[year 1800-1999
b
and | say:
Date dt;

dt.m = 27;
What does this mean? Probably nothing good. So it would be better to rewrite this as:
class Date {
int m;
int d;
inty;
public:
Date(int, int, int);
1

with a public constructor that will properly initialize a Date object.
In C++, data members of aclass may be private (the default), protected (available to derived
classes), or public (available to everyone).
A simple and useful technique for controlling access to the private state of an object isto
define some member functions for setting and getting values:
classA {
int x;
public:
void set_x(inti) {x=1;}
int get_x() { return x;}
b
These functions are inline and have little or no performance overhead.
In C++ there is another sort of hiding available, that offered by namespaces. Suppose that you
have a program with some global datain it:
int x[100];
and you use a C++ classlibrary that also uses global data:
double x = 12.34;

199

C++ Tutorids

These names will clash when you attempt to link the program. A simple solution isto use
namespaces:
namespace Company1 {
int x[100];
}

namespace Company?2 {
double x = 12.34;
}

and refer to the values as "Companyl::x" and "Company2::x". Note that the Javalanguage has
no global variables, and similar usage to this example would involve static datadefined in
classes.

Data hiding is asimple but extremely important concept. Without it, it is difficult to reason
about the behavior of an object, given that its state can be arbitrarily changed at any point.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 5- REPRESENTATION
HIDING

In the last issue we talked about data hiding, where the internal state of an object is hidden
from the user. We said that one reason for this hiding is so that the state can not be arbitrarily
changed.
Another aspect of hiding concerns the representation of an object. For example, consider a
classto handle a stack of integers:
class Stack {
public:
void push(int);
int pop();
int top_of _stack();
b
It's pretty obvious what the public member functions should look like, but what about the
representation? At least three representations could make sense. One would be a fixed-length
array of ints, with an error given on overflow. Another would be a dynamic int array, that is
grown as needed by means of new/delete. Y et a third approach would be to use alinked list of
stack records. Each of these has advantages and disadvantages.
Suppose that the representation was exposed:
class Stack {
public:
int vec[10];
int sp;

int top_of _stack();
1
and someone cheats by accessing top of stack as:
obj.vec[obj.p]
instead of:
obj.top_of _stack()

200

C++ Tutorids

Thiswill work, until such time as the internal representation is changed to something dse. At
that point, this usage will be invalidated, and will not compile or will introduce subtle
problems into arunning program (what if | change the stack origin by 1?).

The point is simply that exposing the internal representation introduces a set of problems with
program reliability and maintainability.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 6 - EXTENSIBILITY

Thus far we've looked at object-oriented design in isolation, focusing on individual classes as
abstractions of some real-world entity. But as you're probably aready aware, C++ classes (and
ones in other languages as well) can be extended by deriving subclasses from them. These
classes add functionality to the base class.
Suppose that we have a class:
classA {
private:
int x;
protected:
inty;
public:
int z;
3

The declarations of the members indicate that x is available only to member functions of the
classitself, y isavailable to subclasses, and z is avail able to everyone.
How do we decide how to structure a class for extensibility? There are several aspects of this,
one of them being the level of protection of individual members. There is not asingle “right"
answer to this question, but one approach isto ask how the classis likely to be used. For
example, with a Date class:

class Date {

private:

long repr; /l days since 1/1/1800

it'sunlikely that aderived class will need to directly access repr, because it'sin an arcane
format and because the Date class can supply aset of functions that will suffice to manipulate
Dates. There is asteep learning curve in learning how to directly manipulate the underlying
representation, and a consequent ability to mess things up by getting it wrong.
On the other hand, for a Tree class:
class TreeNode {
protected:
TreeNode* |eft;
TreeNode* right;
int value;
public:
TreeNode(TreeNode*, TreeNode*, int);
} .

maki n’g the internal pointers visible may make sense, to facilitate a derived class walking
through the tree in an efficient manner.

201

C++ Tutorids

It's useful to distinguish between developers, who may wish to extend aclass, and end users.
For example, with the Date class, the representation (number of days since 1/1/1800) is non-
standard, and in a hard format to manipulate. So it makes sense to hide the representation
completely. On the other hand, for TreeNode, with binary trees as awell-understood entity,
giving adeveloper access to the representation may be a good idea.

There's quite a bit more to say about extensibility, which we will do in future issues.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 7- MORE ABOUT
EXTENSIBILITY

In the last issue we started talking about extending the functionality of a base classviaa
derived class. Another aspect of this ssmply deals with the i ssue of how far to carry derivation.
In other words, how many levels of derived classes make sense?
In theoretical terms, the answer is "an infinite number". That is, you can carefully design a set
of classes, with each derived class adding some functionality to its base class. Thereis no
obvious stopping point for this process.
In practical terms, however, deep class derivations create more problems than they solve. At
some point, humans lose the ability to keep track of all the relationships. And there are some
hidden performance issues, for example with constructors and destructors. The "empty"
constructor for C in this example:

#include <iostream.h>

classA {
public:
A() {cout <<"A::A\n";}
~A() {cout << "A::~A\n";}
b

classB : public A {
public:
B() { cout << "B::B\n";}
~B() { cout << "B::~B\n";}
b

class C : public B {
public:
C() {cout << "C::C\n";}
~C() { cout << "C::~C\n";}
b

void f()
{

}

int main()

{

Cc

202

C++ Tutorids

f0);

return O;
}
in fact causes the constructors for B and A to be called, and likewise for the destructor.
Asasimple rule of thumb, | personally try to keep derivations to three levels or less. In other
words, abase class, and a couple of levels of derived classes from it.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 8- A BOOK ON C++
DESIGN

In issue #027 the new edition of Bjarne Stroustrup's book "The C++ Programming L anguage”
was mentioned. This book came out afew months ago, and contains about 100 pages on
design using C++. It starts out by discussing design at an abstract level, and then moves on to
cover specific design topics as they relate to C++. Recommended if you're interested in this
topic.

INTRODUCTION TO OBJECT-ORIENTED DESIGN PART 9-TEMPLATESVS.
CLASSES

In previous issues we've looked at some of the aspects of template programming. One big
issue that comes up with object-oriented design is when to implement polymorphism viaa
templ ate (a parameterized class or function) in preference to using inheritance or asingle
class.
Thisisahard question to answer, but there are several aspects of the issue that can be
mentioned. Consider first the nature of the algorithm that is to be implemented. How generally
applicable is the algorithm? For example, sorting is used everywhere, and a well-designed sort
function template for fundamental or user-defined types would be very handy to have around.
On the other hand, consider strings. Strings of characters are very heavily used in
programming languages. But what about strings of doubles? For example, does taking a
substring of doubles from a string mean very much? In certain applications it might, but
clearly this feature is not as generally useful as strings of characters.
On the other side of this same argument, if we want to implement an a gorithm for a set of
types, and some of those types are much more widely used than others (such as a string of
chars), then templ ate specializations offer a way to tune performance. For example, astring
template might be defined via:

template <class T> classstring{ ... };
with a specialization for characters:

classstring<char>{ ... };
that is optimized. Of course, if strings of chars represent 99% of the use of the string template,
then perhaps simply devising a string class would make more sense.
Another question to ask is whether al the types of interest fit cleanly into asingle class
hierarchy. For example, ahierarchy for a GUI window system might have:

class Component{ ... };

class Container : public Component{ ... };

203

C++ Tutorids

class Window : public Container { ... };

class Frame : public Window { ... };
That is, all types are in one hierarchy. Such atype hierarchy is often best managed via abstract
classes and virtual functions, without the use of templates. Note that using virtual functions
allows for access to runtime type information, whereas templ ates are more of a compile-time
feature. Newsletter issues #024, #025, and #026 give some examples of the use of virtua
functions and runtime type identification.
But sometimes templates might be useful even in asimple hierarchy such as this one. For
example, a hierarchy of GUI classes might be parameterized based on the type of the
underlying display device, such as a bit-mapped display, dumb terminal, or touch-screen.

204

